|
|
|
@ -109,11 +109,11 @@ class MultiHeadAttention(nn.Layer):
|
|
|
|
|
n_batch, n_ctx, n_state = q.shape
|
|
|
|
|
scale = (n_state // self.n_head)**-0.25
|
|
|
|
|
q = paddle.transpose(
|
|
|
|
|
q.view(*q.shape[:2], self.n_head, -1), (0, 2, 1, 3)) * scale
|
|
|
|
|
q.reshape([*q.shape[:2], self.n_head, -1]), (0, 2, 1, 3)) * scale
|
|
|
|
|
k = paddle.transpose(
|
|
|
|
|
k.view(*k.shape[:2], self.n_head, -1), (0, 2, 3, 1)) * scale
|
|
|
|
|
k.reshape([*k.shape[:2], self.n_head, -1]), (0, 2, 3, 1)) * scale
|
|
|
|
|
v = paddle.transpose(
|
|
|
|
|
v.view(*v.shape[:2], self.n_head, -1), (0, 2, 1, 3))
|
|
|
|
|
v.reshape([*v.shape[:2], self.n_head, -1]), (0, 2, 1, 3))
|
|
|
|
|
|
|
|
|
|
qk = q @ k
|
|
|
|
|
if mask is not None:
|
|
|
|
@ -823,7 +823,7 @@ class BeamSearchDecoder(TokenDecoder):
|
|
|
|
|
if self.finished_sequences is None: # for the first update
|
|
|
|
|
self.finished_sequences = [{} for _ in range(batch_size)]
|
|
|
|
|
|
|
|
|
|
logprobs = F.log_softmax(logits, axis=-1, dtype=paddle.float32)
|
|
|
|
|
logprobs = F.log_softmax(logits, axis=-1, dtype='float32')
|
|
|
|
|
next_tokens, source_indices, finished_sequences = [], [], []
|
|
|
|
|
for i in range(batch_size):
|
|
|
|
|
scores, sources, finished = {}, {}, {}
|
|
|
|
@ -969,7 +969,7 @@ class ApplyTimestampRules(LogitFilter):
|
|
|
|
|
logits[:, last_allowed + 1:] = -np.inf
|
|
|
|
|
|
|
|
|
|
# if sum of probability over timestamps is above any other token, sample timestamp
|
|
|
|
|
logprobs = F.log_softmax(logits, axis=-1, dtype=paddle.float32)
|
|
|
|
|
logprobs = F.log_softmax(logits, axis=-1, dtype='float32')
|
|
|
|
|
for k in range(tokens.shape[0]):
|
|
|
|
|
# When using paddle.logsumexp on a 32GB Tesla-V100 GPU, we encountered CUDA error 700.
|
|
|
|
|
# To bypass this issue in CI, we have decomposed the operation into separate steps.
|
|
|
|
|