parent
4ce080407c
commit
58d761f056
@ -0,0 +1,110 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Prepare TIMIT dataset (Standard split from Kaldi)
|
||||
|
||||
Create manifest files from splited datased.
|
||||
Manifest file is a json-format file with each line containing the
|
||||
meta data (i.e. audio filepath, transcript and audio duration)
|
||||
of each audio file in the data set.
|
||||
"""
|
||||
import argparse
|
||||
import codecs
|
||||
import json
|
||||
import os
|
||||
|
||||
import soundfile
|
||||
|
||||
parser = argparse.ArgumentParser(description=__doc__)
|
||||
parser.add_argument(
|
||||
"--src_dir",
|
||||
default="",
|
||||
type=str,
|
||||
help="Directory to kaldi splited data. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--manifest_prefix",
|
||||
default="manifest",
|
||||
type=str,
|
||||
help="Filepath prefix for output manifests. (default: %(default)s)")
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
def create_manifest(data_dir, manifest_path_prefix):
|
||||
print("Creating manifest %s ..." % manifest_path_prefix)
|
||||
json_lines = []
|
||||
|
||||
data_types = ['train', 'dev', 'test']
|
||||
for dtype in data_types:
|
||||
del json_lines[:]
|
||||
total_sec = 0.0
|
||||
total_text = 0.0
|
||||
total_num = 0
|
||||
|
||||
phn_path = os.path.join(data_dir, dtype+'.text')
|
||||
phn_dict = {}
|
||||
for line in codecs.open(phn_path, 'r', 'utf-8'):
|
||||
line = line.strip()
|
||||
if line == '':
|
||||
continue
|
||||
audio_id, text = line.split(' ', 1)
|
||||
phn_dict[audio_id] = text
|
||||
|
||||
audio_dir = os.path.join(data_dir, dtype+'_sph.scp')
|
||||
for line in codecs.open(audio_dir, 'r', 'utf-8'):
|
||||
audio_id, audio_path = line.strip().split()
|
||||
# if no transcription for audio then raise error
|
||||
assert audio_id in phn_dict
|
||||
audio_data, samplerate = soundfile.read(audio_path)
|
||||
duration = float(len(audio_data) / samplerate)
|
||||
text = phn_dict[audio_id]
|
||||
json_lines.append(
|
||||
json.dumps(
|
||||
{
|
||||
'utt': audio_id,
|
||||
'feat': audio_path,
|
||||
'feat_shape': (duration, ), # second
|
||||
'text': text
|
||||
},
|
||||
ensure_ascii=False))
|
||||
|
||||
total_sec += duration
|
||||
total_text += len(text)
|
||||
total_num += 1
|
||||
|
||||
manifest_path = manifest_path_prefix + '.' + dtype + '.raw'
|
||||
with codecs.open(manifest_path, 'w', 'utf-8') as fout:
|
||||
for line in json_lines:
|
||||
fout.write(line + '\n')
|
||||
|
||||
|
||||
def prepare_dataset(src_dir, manifest_path=None):
|
||||
"""create manifest file."""
|
||||
if os.path.isdir(manifest_path):
|
||||
manifest_path = os.path.join(manifest_path, 'manifest')
|
||||
if manifest_path:
|
||||
create_manifest(src_dir, manifest_path)
|
||||
|
||||
|
||||
def main():
|
||||
if args.src_dir.startswith('~'):
|
||||
args.src_dir = os.path.expanduser(args.src_dir)
|
||||
|
||||
prepare_dataset(
|
||||
src_dir=args.src_dir,
|
||||
manifest_path=args.manifest_prefix)
|
||||
|
||||
print("manifest prepare done!")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -0,0 +1,3 @@
|
||||
# TIMIT
|
||||
|
||||
Results will be organized and updated soon.
|
@ -0,0 +1,34 @@
|
||||
[
|
||||
{
|
||||
"type": "shift",
|
||||
"params": {
|
||||
"min_shift_ms": -5,
|
||||
"max_shift_ms": 5
|
||||
},
|
||||
"prob": 1.0
|
||||
},
|
||||
{
|
||||
"type": "speed",
|
||||
"params": {
|
||||
"min_speed_rate": 0.9,
|
||||
"max_speed_rate": 1.1,
|
||||
"num_rates": 3
|
||||
},
|
||||
"prob": 0.0
|
||||
},
|
||||
{
|
||||
"type": "specaug",
|
||||
"params": {
|
||||
"F": 10,
|
||||
"T": 50,
|
||||
"n_freq_masks": 2,
|
||||
"n_time_masks": 2,
|
||||
"p": 1.0,
|
||||
"W": 80,
|
||||
"adaptive_number_ratio": 0,
|
||||
"adaptive_size_ratio": 0,
|
||||
"max_n_time_masks": 20
|
||||
},
|
||||
"prob": 1.0
|
||||
}
|
||||
]
|
@ -0,0 +1,50 @@
|
||||
faks0
|
||||
fdac1
|
||||
fjem0
|
||||
mgwt0
|
||||
mjar0
|
||||
mmdb1
|
||||
mmdm2
|
||||
mpdf0
|
||||
fcmh0
|
||||
fkms0
|
||||
mbdg0
|
||||
mbwm0
|
||||
mcsh0
|
||||
fadg0
|
||||
fdms0
|
||||
fedw0
|
||||
mgjf0
|
||||
mglb0
|
||||
mrtk0
|
||||
mtaa0
|
||||
mtdt0
|
||||
mthc0
|
||||
mwjg0
|
||||
fnmr0
|
||||
frew0
|
||||
fsem0
|
||||
mbns0
|
||||
mmjr0
|
||||
mdls0
|
||||
mdlf0
|
||||
mdvc0
|
||||
mers0
|
||||
fmah0
|
||||
fdrw0
|
||||
mrcs0
|
||||
mrjm4
|
||||
fcal1
|
||||
mmwh0
|
||||
fjsj0
|
||||
majc0
|
||||
mjsw0
|
||||
mreb0
|
||||
fgjd0
|
||||
fjmg0
|
||||
mroa0
|
||||
mteb0
|
||||
mjfc0
|
||||
mrjr0
|
||||
fmml0
|
||||
mrws1
|
@ -0,0 +1,61 @@
|
||||
aa aa aa
|
||||
ae ae ae
|
||||
ah ah ah
|
||||
ao ao aa
|
||||
aw aw aw
|
||||
ax ax ah
|
||||
ax-h ax ah
|
||||
axr er er
|
||||
ay ay ay
|
||||
b b b
|
||||
bcl vcl sil
|
||||
ch ch ch
|
||||
d d d
|
||||
dcl vcl sil
|
||||
dh dh dh
|
||||
dx dx dx
|
||||
eh eh eh
|
||||
el el l
|
||||
em m m
|
||||
en en n
|
||||
eng ng ng
|
||||
epi epi sil
|
||||
er er er
|
||||
ey ey ey
|
||||
f f f
|
||||
g g g
|
||||
gcl vcl sil
|
||||
h# sil sil
|
||||
hh hh hh
|
||||
hv hh hh
|
||||
ih ih ih
|
||||
ix ix ih
|
||||
iy iy iy
|
||||
jh jh jh
|
||||
k k k
|
||||
kcl cl sil
|
||||
l l l
|
||||
m m m
|
||||
n n n
|
||||
ng ng ng
|
||||
nx n n
|
||||
ow ow ow
|
||||
oy oy oy
|
||||
p p p
|
||||
pau sil sil
|
||||
pcl cl sil
|
||||
q
|
||||
r r r
|
||||
s s s
|
||||
sh sh sh
|
||||
t t t
|
||||
tcl cl sil
|
||||
th th th
|
||||
uh uh uh
|
||||
uw uw uw
|
||||
ux uw uw
|
||||
v v v
|
||||
w w w
|
||||
y y y
|
||||
z z z
|
||||
zh zh sh
|
@ -0,0 +1,24 @@
|
||||
mdab0
|
||||
mwbt0
|
||||
felc0
|
||||
mtas1
|
||||
mwew0
|
||||
fpas0
|
||||
mjmp0
|
||||
mlnt0
|
||||
fpkt0
|
||||
mlll0
|
||||
mtls0
|
||||
fjlm0
|
||||
mbpm0
|
||||
mklt0
|
||||
fnlp0
|
||||
mcmj0
|
||||
mjdh0
|
||||
fmgd0
|
||||
mgrt0
|
||||
mnjm0
|
||||
fdhc0
|
||||
mjln0
|
||||
mpam0
|
||||
fmld0
|
@ -0,0 +1,110 @@
|
||||
# https://yaml.org/type/float.html
|
||||
data:
|
||||
train_manifest: data/manifest.train
|
||||
dev_manifest: data/manifest.dev
|
||||
test_manifest: data/manifest.test
|
||||
min_input_len: 0.5 # second
|
||||
max_input_len: 30.0 # second
|
||||
min_output_len: 0.0 # tokens
|
||||
max_output_len: 400.0 # tokens
|
||||
min_output_input_ratio: 0.05
|
||||
max_output_input_ratio: 100.0
|
||||
|
||||
collator:
|
||||
vocab_filepath: data/vocab.txt
|
||||
unit_type: "word"
|
||||
mean_std_filepath: ""
|
||||
augmentation_config: ""
|
||||
batch_size: 64
|
||||
raw_wav: True # use raw_wav or kaldi feature
|
||||
specgram_type: fbank #linear, mfcc, fbank
|
||||
feat_dim: 80
|
||||
delta_delta: False
|
||||
dither: 1.0
|
||||
target_sample_rate: 16000
|
||||
max_freq: None
|
||||
n_fft: None
|
||||
stride_ms: 10.0
|
||||
window_ms: 25.0
|
||||
use_dB_normalization: True
|
||||
target_dB: -20
|
||||
random_seed: 0
|
||||
keep_transcription_text: False
|
||||
sortagrad: True
|
||||
shuffle_method: batch_shuffle
|
||||
num_workers: 2
|
||||
|
||||
|
||||
# network architecture
|
||||
model:
|
||||
cmvn_file: "data/mean_std.json"
|
||||
cmvn_file_type: "json"
|
||||
# encoder related
|
||||
encoder: transformer
|
||||
encoder_conf:
|
||||
output_size: 256 # dimension of attention
|
||||
attention_heads: 4
|
||||
linear_units: 2048 # the number of units of position-wise feed forward
|
||||
num_blocks: 12 # the number of encoder blocks
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||
normalize_before: true
|
||||
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.0
|
||||
src_attention_dropout_rate: 0.0
|
||||
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
|
||||
|
||||
training:
|
||||
n_epoch: 120
|
||||
accum_grad: 2
|
||||
global_grad_clip: 5.0
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.004
|
||||
weight_decay: 1e-06
|
||||
scheduler: warmuplr # pytorch v1.1.0+ required
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
lr_decay: 1.0
|
||||
log_interval: 100
|
||||
checkpoint:
|
||||
kbest_n: 50
|
||||
latest_n: 5
|
||||
|
||||
|
||||
decoding:
|
||||
batch_size: 64
|
||||
error_rate_type: wer
|
||||
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
||||
alpha: 2.5
|
||||
beta: 0.3
|
||||
beam_size: 10
|
||||
cutoff_prob: 1.0
|
||||
cutoff_top_n: 0
|
||||
num_proc_bsearch: 8
|
||||
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||
# <0: for decoding, use full chunk.
|
||||
# >0: for decoding, use fixed chunk size as set.
|
||||
# 0: used for training, it's prohibited here.
|
||||
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
||||
|
||||
|
@ -0,0 +1,37 @@
|
||||
#!/bin/bash
|
||||
|
||||
if [ $# != 2 ];then
|
||||
echo "usage: ${0} config_path ckpt_path_prefix"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
echo "using $ngpu gpus..."
|
||||
|
||||
device=gpu
|
||||
if [ ${ngpu} == 0 ];then
|
||||
device=cpu
|
||||
fi
|
||||
config_path=$1
|
||||
ckpt_prefix=$2
|
||||
|
||||
batch_size=1
|
||||
output_dir=${ckpt_prefix}
|
||||
mkdir -p ${output_dir}
|
||||
|
||||
# align dump in `result_file`
|
||||
# .tier, .TextGrid dump in `dir of result_file`
|
||||
python3 -u ${BIN_DIR}/alignment.py \
|
||||
--device ${device} \
|
||||
--nproc 1 \
|
||||
--config ${config_path} \
|
||||
--result_file ${output_dir}/${type}.align \
|
||||
--checkpoint_path ${ckpt_prefix} \
|
||||
--opts decoding.batch_size ${batch_size}
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed in ctc alignment!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
exit 0
|
@ -0,0 +1,87 @@
|
||||
#!/bin/bash
|
||||
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
|
||||
unit_type=word
|
||||
TIMIT_path=
|
||||
|
||||
source ${MAIN_ROOT}/utils/parse_options.sh
|
||||
|
||||
mkdir -p data
|
||||
TARGET_DIR=${MAIN_ROOT}/examples/dataset
|
||||
mkdir -p ${TARGET_DIR}
|
||||
|
||||
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
||||
# download data, generate manifests
|
||||
python3 ${TARGET_DIR}/timit/timit_kaldi_standard_split.py \
|
||||
--manifest_prefix="data/manifest" \
|
||||
--src="data/local" \
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Prepare TIMIT failed. Terminated."
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
# build vocabulary
|
||||
python3 ${MAIN_ROOT}/utils/build_vocab.py \
|
||||
--unit_type ${unit_type} \
|
||||
--count_threshold=0 \
|
||||
--vocab_path="data/vocab.txt" \
|
||||
--manifest_paths="data/manifest.train.raw"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Build vocabulary failed. Terminated."
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
# compute mean and stddev for normalizer
|
||||
num_workers=$(nproc)
|
||||
python3 ${MAIN_ROOT}/utils/compute_mean_std.py \
|
||||
--manifest_path="data/manifest.train.raw" \
|
||||
--num_samples=-1 \
|
||||
--specgram_type="fbank" \
|
||||
--feat_dim=80 \
|
||||
--delta_delta=false \
|
||||
--sample_rate=16000 \
|
||||
--stride_ms=10.0 \
|
||||
--window_ms=25.0 \
|
||||
--use_dB_normalization=False \
|
||||
--num_workers=${num_workers} \
|
||||
--output_path="data/mean_std.json"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Compute mean and stddev failed. Terminated."
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
# format manifest with tokenids, vocab size
|
||||
for set in train dev test; do
|
||||
{
|
||||
python3 ${MAIN_ROOT}/utils/format_data.py \
|
||||
--feat_type "raw" \
|
||||
--cmvn_path "data/mean_std.json" \
|
||||
--unit_type ${unit_type} \
|
||||
--vocab_path="data/vocab.txt" \
|
||||
--manifest_path="data/manifest.${set}.raw" \
|
||||
--output_path="data/manifest.${set}"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Formt mnaifest.${set} failed. Terminated."
|
||||
exit 1
|
||||
fi
|
||||
}&
|
||||
done
|
||||
wait
|
||||
fi
|
||||
|
||||
echo "TIMIT Data preparation done."
|
||||
exit 0
|
@ -0,0 +1,34 @@
|
||||
#!/bin/bash
|
||||
|
||||
if [ $# != 3 ];then
|
||||
echo "usage: $0 config_path ckpt_prefix jit_model_path"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
echo "using $ngpu gpus..."
|
||||
|
||||
config_path=$1
|
||||
ckpt_path_prefix=$2
|
||||
jit_model_export_path=$3
|
||||
|
||||
device=gpu
|
||||
if [ ${ngpu} == 0 ];then
|
||||
device=cpu
|
||||
fi
|
||||
|
||||
python3 -u ${BIN_DIR}/export.py \
|
||||
--device ${device} \
|
||||
--nproc ${ngpu} \
|
||||
--config ${config_path} \
|
||||
--checkpoint_path ${ckpt_path_prefix} \
|
||||
--export_path ${jit_model_export_path}
|
||||
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed in export!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
exit 0
|
@ -0,0 +1,71 @@
|
||||
#!/bin/bash
|
||||
|
||||
if [ $# != 2 ];then
|
||||
echo "usage: ${0} config_path ckpt_path_prefix"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
echo "using $ngpu gpus..."
|
||||
|
||||
device=gpu
|
||||
if [ ${ngpu} == 0 ];then
|
||||
device=cpu
|
||||
fi
|
||||
|
||||
config_path=$1
|
||||
ckpt_prefix=$2
|
||||
|
||||
chunk_mode=false
|
||||
if [[ ${config_path} =~ ^chunk_ ]];then
|
||||
chunk_mode=true
|
||||
fi
|
||||
|
||||
|
||||
# download language model
|
||||
#bash local/download_lm_en.sh
|
||||
#if [ $? -ne 0 ]; then
|
||||
# exit 1
|
||||
#fi
|
||||
|
||||
for type in attention ctc_greedy_search; do
|
||||
echo "decoding ${type}"
|
||||
if [ ${chunk_mode} == true ];then
|
||||
# stream decoding only support batchsize=1
|
||||
batch_size=1
|
||||
else
|
||||
batch_size=64
|
||||
fi
|
||||
python3 -u ${BIN_DIR}/test.py \
|
||||
--device ${device} \
|
||||
--nproc 1 \
|
||||
--config ${config_path} \
|
||||
--result_file ${ckpt_prefix}.${type}.rsl \
|
||||
--checkpoint_path ${ckpt_prefix} \
|
||||
--opts decoding.decoding_method ${type} decoding.batch_size ${batch_size}
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed in evaluation!"
|
||||
exit 1
|
||||
fi
|
||||
done
|
||||
|
||||
for type in ctc_prefix_beam_search attention_rescoring; do
|
||||
echo "decoding ${type}"
|
||||
batch_size=1
|
||||
python3 -u ${BIN_DIR}/test.py \
|
||||
--device ${device} \
|
||||
--nproc 1 \
|
||||
--config ${config_path} \
|
||||
--result_file ${ckpt_prefix}.${type}.rsl \
|
||||
--checkpoint_path ${ckpt_prefix} \
|
||||
--opts decoding.decoding_method ${type} decoding.batch_size ${batch_size}
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed in evaluation!"
|
||||
exit 1
|
||||
fi
|
||||
done
|
||||
|
||||
|
||||
exit 0
|
@ -0,0 +1,90 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Copyright 2013 (Authors: Bagher BabaAli, Daniel Povey, Arnab Ghoshal)
|
||||
# 2014 Brno University of Technology (Author: Karel Vesely)
|
||||
# Apache 2.0.
|
||||
|
||||
if [ $# -ne 1 ]; then
|
||||
echo "Argument should be the Timit directory, see ../run.sh for example."
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
dir=`pwd`/data/local
|
||||
mkdir -p $dir
|
||||
local=`pwd`/local
|
||||
utils=`pwd`/utils
|
||||
conf=`pwd`/conf
|
||||
|
||||
[ -f $conf/test_spk.list ] || error_exit "$PROG: Eval-set speaker list not found.";
|
||||
[ -f $conf/dev_spk.list ] || error_exit "$PROG: dev-set speaker list not found.";
|
||||
|
||||
# First check if the train & test directories exist (these can either be upper-
|
||||
# or lower-cased
|
||||
if [ ! -d $*/TRAIN -o ! -d $*/TEST ] && [ ! -d $*/train -o ! -d $*/test ]; then
|
||||
echo "timit_data_prep.sh: Spot check of command line argument failed"
|
||||
echo "Command line argument must be absolute pathname to TIMIT directory"
|
||||
echo "with name like /export/corpora5/LDC/LDC93S1/timit/TIMIT"
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
# Now check what case the directory structure is
|
||||
uppercased=false
|
||||
train_dir=train
|
||||
test_dir=test
|
||||
if [ -d $*/TRAIN ]; then
|
||||
uppercased=true
|
||||
train_dir=TRAIN
|
||||
test_dir=TEST
|
||||
fi
|
||||
|
||||
tmpdir=$(mktemp -d /tmp/kaldi.XXXX);
|
||||
trap 'rm -rf "$tmpdir"' EXIT
|
||||
|
||||
# Get the list of speakers. The list of speakers in the 24-speaker core test
|
||||
# set and the 50-speaker development set must be supplied to the script. All
|
||||
# speakers in the 'train' directory are used for training.
|
||||
if $uppercased; then
|
||||
tr '[:lower:]' '[:upper:]' < $conf/dev_spk.list > $tmpdir/dev_spk
|
||||
tr '[:lower:]' '[:upper:]' < $conf/test_spk.list > $tmpdir/test_spk
|
||||
ls -d "$*"/TRAIN/DR*/* | sed -e "s:^.*/::" > $tmpdir/train_spk
|
||||
else
|
||||
tr '[:upper:]' '[:lower:]' < $conf/dev_spk.list > $tmpdir/dev_spk
|
||||
tr '[:upper:]' '[:lower:]' < $conf/test_spk.list > $tmpdir/test_spk
|
||||
ls -d "$*"/train/dr*/* | sed -e "s:^.*/::" > $tmpdir/train_spk
|
||||
fi
|
||||
|
||||
cd $dir
|
||||
for x in train dev test; do
|
||||
# First, find the list of audio files (use only si & sx utterances).
|
||||
# Note: train & test sets are under different directories, but doing find on
|
||||
# both and grepping for the speakers will work correctly.
|
||||
find $*/{$train_dir,$test_dir} -not \( -iname 'SA*' \) -iname '*.WAV' \
|
||||
| grep -f $tmpdir/${x}_spk > ${x}_sph.flist
|
||||
|
||||
sed -e 's:.*/\(.*\)/\(.*\).\(WAV\|wav\)$:\1_\2:' ${x}_sph.flist \
|
||||
> $tmpdir/${x}_sph.uttids
|
||||
paste $tmpdir/${x}_sph.uttids ${x}_sph.flist \
|
||||
| sort -k1,1 > ${x}_sph.scp
|
||||
|
||||
cat ${x}_sph.scp | awk '{print $1}' > ${x}.uttids
|
||||
|
||||
# Now, Convert the transcripts into our format (no normalization yet)
|
||||
# Get the transcripts: each line of the output contains an utterance
|
||||
# ID followed by the transcript.
|
||||
find $*/{$train_dir,$test_dir} -not \( -iname 'SA*' \) -iname '*.PHN' \
|
||||
| grep -f $tmpdir/${x}_spk > $tmpdir/${x}_phn.flist
|
||||
sed -e 's:.*/\(.*\)/\(.*\).\(PHN\|phn\)$:\1_\2:' $tmpdir/${x}_phn.flist \
|
||||
> $tmpdir/${x}_phn.uttids
|
||||
while read line; do
|
||||
[ -f $line ] || error_exit "Cannot find transcription file '$line'";
|
||||
cut -f3 -d' ' "$line" | tr '\n' ' ' | perl -ape 's: *$:\n:;'
|
||||
done < $tmpdir/${x}_phn.flist > $tmpdir/${x}_phn.trans
|
||||
paste $tmpdir/${x}_phn.uttids $tmpdir/${x}_phn.trans \
|
||||
| sort -k1,1 > ${x}.trans
|
||||
|
||||
# Do normalization steps.
|
||||
cat ${x}.trans | $local/timit_norm_trans.pl -i - -m $conf/phones.60-48-39.map -to 39 | sort > $x.text || exit 1;
|
||||
|
||||
done
|
||||
|
||||
echo "Data preparation succeeded"
|
@ -0,0 +1,91 @@
|
||||
#!/usr/bin/env perl
|
||||
use warnings; #sed replacement for -w perl parameter
|
||||
|
||||
# Copyright 2012 Arnab Ghoshal
|
||||
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
# KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
|
||||
# WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
|
||||
# MERCHANTABLITY OR NON-INFRINGEMENT.
|
||||
# See the Apache 2 License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
# This script normalizes the TIMIT phonetic transcripts that have been
|
||||
# extracted in a format where each line contains an utterance ID followed by
|
||||
# the transcript, e.g.:
|
||||
# fcke0_si1111 h# hh ah dx ux w iy dcl d ix f ay n ih q h#
|
||||
|
||||
my $usage = "Usage: timit_norm_trans.pl -i transcript -m phone_map -from [60|48] -to [48|39] > normalized\n
|
||||
Normalizes phonetic transcriptions for TIMIT, by mapping the phones to a
|
||||
smaller set defined by the -m option. This script assumes that the mapping is
|
||||
done in the \"standard\" fashion, i.e. to 48 or 39 phones. The input is
|
||||
assumed to have 60 phones (+1 for glottal stop, which is deleted), but that can
|
||||
be changed using the -from option. The input format is assumed to be utterance
|
||||
ID followed by transcript on the same line.\n";
|
||||
|
||||
use strict;
|
||||
use Getopt::Long;
|
||||
die "$usage" unless(@ARGV >= 1);
|
||||
my ($in_trans, $phone_map, $num_phones_out);
|
||||
my $num_phones_in = 60;
|
||||
GetOptions ("i=s" => \$in_trans, # Input transcription
|
||||
"m=s" => \$phone_map, # File containing phone mappings
|
||||
"from=i" => \$num_phones_in, # Input #phones: must be 60 or 48
|
||||
"to=i" => \$num_phones_out ); # Output #phones: must be 48 or 39
|
||||
|
||||
die $usage unless(defined($in_trans) && defined($phone_map) &&
|
||||
defined($num_phones_out));
|
||||
if ($num_phones_in != 60 && $num_phones_in != 48) {
|
||||
die "Can only used 60 or 48 for -from (used $num_phones_in)."
|
||||
}
|
||||
if ($num_phones_out != 48 && $num_phones_out != 39) {
|
||||
die "Can only used 48 or 39 for -to (used $num_phones_out)."
|
||||
}
|
||||
unless ($num_phones_out < $num_phones_in) {
|
||||
die "Argument to -from ($num_phones_in) must be greater than that to -to ($num_phones_out)."
|
||||
}
|
||||
|
||||
|
||||
open(M, "<$phone_map") or die "Cannot open mappings file '$phone_map': $!";
|
||||
my (%phonemap, %seen_phones);
|
||||
my $num_seen_phones = 0;
|
||||
while (<M>) {
|
||||
chomp;
|
||||
next if ($_ =~ /^q\s*.*$/); # Ignore glottal stops.
|
||||
m:^(\S+)\s+(\S+)\s+(\S+)$: or die "Bad line: $_";
|
||||
my $mapped_from = ($num_phones_in == 60)? $1 : $2;
|
||||
my $mapped_to = ($num_phones_out == 48)? $2 : $3;
|
||||
if (!defined($seen_phones{$mapped_to})) {
|
||||
$seen_phones{$mapped_to} = 1;
|
||||
$num_seen_phones += 1;
|
||||
}
|
||||
$phonemap{$mapped_from} = $mapped_to;
|
||||
}
|
||||
if ($num_seen_phones != $num_phones_out) {
|
||||
die "Trying to map to $num_phones_out phones, but seen only $num_seen_phones";
|
||||
}
|
||||
|
||||
open(T, "<$in_trans") or die "Cannot open transcription file '$in_trans': $!";
|
||||
while (<T>) {
|
||||
chomp;
|
||||
$_ =~ m:^(\S+)\s+(.+): or die "Bad line: $_";
|
||||
my $utt_id = $1;
|
||||
my $trans = $2;
|
||||
|
||||
$trans =~ s/q//g; # Remove glottal stops.
|
||||
$trans =~ s/^\s*//; $trans =~ s/\s*$//; # Normalize spaces
|
||||
|
||||
print $utt_id;
|
||||
for my $phone (split(/\s+/, $trans)) {
|
||||
if(exists $phonemap{$phone}) { print " $phonemap{$phone}"; }
|
||||
if(not exists $phonemap{$phone}) { print " $phone"; }
|
||||
}
|
||||
print "\n";
|
||||
}
|
@ -0,0 +1,33 @@
|
||||
#!/bin/bash
|
||||
|
||||
if [ $# != 2 ];then
|
||||
echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
echo "using $ngpu gpus..."
|
||||
|
||||
config_path=$1
|
||||
ckpt_name=$2
|
||||
|
||||
device=gpu
|
||||
if [ ${ngpu} == 0 ];then
|
||||
device=cpu
|
||||
fi
|
||||
echo "using ${device}..."
|
||||
|
||||
mkdir -p exp
|
||||
|
||||
python3 -u ${BIN_DIR}/train.py \
|
||||
--device ${device} \
|
||||
--nproc ${ngpu} \
|
||||
--config ${config_path} \
|
||||
--output exp/${ckpt_name}
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed in training!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
exit 0
|
@ -0,0 +1,13 @@
|
||||
export MAIN_ROOT=${PWD}/../../
|
||||
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
|
||||
export LC_ALL=C
|
||||
|
||||
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||
export PYTHONIOENCODING=UTF-8
|
||||
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
|
||||
|
||||
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/lib/
|
||||
|
||||
|
||||
MODEL=u2
|
||||
export BIN_DIR=${MAIN_ROOT}/deepspeech/exps/${MODEL}/bin
|
@ -0,0 +1,45 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
source path.sh
|
||||
|
||||
stage=0
|
||||
stop_stage=50
|
||||
conf_path=conf/transformer.yaml
|
||||
avg_num=10
|
||||
TIMIT_path=
|
||||
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
|
||||
|
||||
avg_ckpt=avg_${avg_num}
|
||||
ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}')
|
||||
echo "checkpoint name ${ckpt}"
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
# prepare data
|
||||
bash ./local/timit_data_prep.sh ${TIMIT_path}
|
||||
bash ./local/data.sh || exit -1
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
# train model, all `ckpt` under `exp` dir
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3 ./local/train.sh ${conf_path} ${ckpt}
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
# avg n best model
|
||||
avg.sh exp/${ckpt}/checkpoints ${avg_num}
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
# test ckpt avg_n
|
||||
CUDA_VISIBLE_DEVICES=7 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
# ctc alignment of test data
|
||||
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
# export ckpt avg_n
|
||||
CUDA_VISIBLE_DEVICES= ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
|
||||
fi
|
Loading…
Reference in new issue