|
|
|
@ -471,6 +471,165 @@ class U2Tester(U2Trainer):
|
|
|
|
|
infer_model, input_spec = self.load_inferspec()
|
|
|
|
|
assert isinstance(input_spec, list), type(input_spec)
|
|
|
|
|
infer_model.eval()
|
|
|
|
|
static_model = paddle.jit.to_static(infer_model, input_spec=input_spec)
|
|
|
|
|
logger.info(f"Export code: {static_model.forward.code}")
|
|
|
|
|
paddle.jit.save(static_model, self.args.export_path)
|
|
|
|
|
# static_model = paddle.jit.to_static(infer_model, input_spec=input_spec)
|
|
|
|
|
# logger.info(f"Export code: {static_model.forward.code}")
|
|
|
|
|
# paddle.jit.save(static_model, self.args.export_path)
|
|
|
|
|
|
|
|
|
|
# # to check outputs
|
|
|
|
|
# def flatten(out):
|
|
|
|
|
# if isinstance(out, paddle.Tensor):
|
|
|
|
|
# return [out]
|
|
|
|
|
|
|
|
|
|
# flatten_out = []
|
|
|
|
|
# for var in out:
|
|
|
|
|
# if isinstance(var, (list, tuple)):
|
|
|
|
|
# flatten_out.extend(flatten(var))
|
|
|
|
|
# else:
|
|
|
|
|
# flatten_out.append(var)
|
|
|
|
|
# return flatten_out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ######################### infer_model.forward_attention_decoder ########################
|
|
|
|
|
# a = paddle.full(shape=[10, 8], fill_value=10, dtype='int64')
|
|
|
|
|
# b = paddle.full(shape=[10], fill_value=8, dtype='int64')
|
|
|
|
|
# # c = paddle.rand(shape=[1, 20, 512], dtype='float32')
|
|
|
|
|
# c = paddle.full(shape=[1, 20, 512], fill_value=1, dtype='float32')
|
|
|
|
|
|
|
|
|
|
# out1 = infer_model.forward_attention_decoder(a, b, c)
|
|
|
|
|
# print(out1)
|
|
|
|
|
|
|
|
|
|
# input_spec = [paddle.static.InputSpec(shape=[None, None], dtype='int64'),
|
|
|
|
|
# paddle.static.InputSpec(shape=[None], dtype='int64'),
|
|
|
|
|
# paddle.static.InputSpec(shape=[1, None, 512], dtype='float32')]
|
|
|
|
|
# static_model = paddle.jit.to_static(infer_model.forward_attention_decoder, input_spec=input_spec)
|
|
|
|
|
# paddle.jit.save(static_model, self.args.export_path)
|
|
|
|
|
# static_model = paddle.jit.load(self.args.export_path)
|
|
|
|
|
# out2 = static_model(a, b, c)
|
|
|
|
|
# # print(out2)
|
|
|
|
|
|
|
|
|
|
# out1 = flatten(out1)
|
|
|
|
|
# out2 = flatten(out2)
|
|
|
|
|
# for i in range(len(out1)):
|
|
|
|
|
# print(np.equal(out1[i].numpy(), out2[i].numpy()).all())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ######################### infer_model.forward_encoder_chunk ########################
|
|
|
|
|
# xs = paddle.rand(shape=[1, 67, 80], dtype='float32')
|
|
|
|
|
# offset = paddle.to_tensor([80], dtype='int32')
|
|
|
|
|
# required_cache_size = -16
|
|
|
|
|
# att_cache = paddle.randn(shape=[12, 8, 80, 128], dtype='float32')
|
|
|
|
|
# cnn_cache = paddle.randn(shape=[12, 1, 512, 14], dtype='float32')
|
|
|
|
|
# # out1 = infer_model.forward_encoder_chunk(xs, offset, required_cache_size, att_cache, cnn_cache)
|
|
|
|
|
# # print(out1)
|
|
|
|
|
# zero_out1 = infer_model.forward_encoder_chunk(xs, offset, required_cache_size, att_cache=paddle.zeros([0, 0, 0, 0]), cnn_cache=paddle.zeros([0, 0, 0, 0]))
|
|
|
|
|
# # print(zero_out1)
|
|
|
|
|
|
|
|
|
|
# input_spec = [
|
|
|
|
|
# paddle.static.InputSpec(shape=[1, None, 80], dtype='float32'),
|
|
|
|
|
# paddle.static.InputSpec(shape=[1], dtype='int32'),
|
|
|
|
|
# -16,
|
|
|
|
|
# paddle.static.InputSpec(shape=[None, None, None, None], dtype='float32'),
|
|
|
|
|
# paddle.static.InputSpec(shape=[None, None, None, None], dtype='float32')]
|
|
|
|
|
# static_model = paddle.jit.to_static(infer_model.forward_encoder_chunk, input_spec=input_spec)
|
|
|
|
|
# paddle.jit.save(static_model, self.args.export_path)
|
|
|
|
|
# static_model = paddle.jit.load(self.args.export_path)
|
|
|
|
|
# # out2 = static_model(xs, offset, att_cache, cnn_cache)
|
|
|
|
|
# # print(out2)
|
|
|
|
|
# zero_out2 = static_model(xs, offset, paddle.zeros([0, 0, 0, 0]), paddle.zeros([0, 0, 0, 0]))
|
|
|
|
|
|
|
|
|
|
# # out1 = flatten(out1)
|
|
|
|
|
# # out2 = flatten(out2)
|
|
|
|
|
# # for i in range(len(out1)):
|
|
|
|
|
# # print(np.equal(out1[i].numpy(), out2[i].numpy()).all())
|
|
|
|
|
|
|
|
|
|
# zero_out1 = flatten(zero_out1)
|
|
|
|
|
# zero_out2 = flatten(zero_out2)
|
|
|
|
|
# for i in range(len(zero_out1)):
|
|
|
|
|
# print(np.equal(zero_out1[i].numpy(), zero_out2[i].numpy()).all())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ######################### infer_model.forward_encoder_chunk zero Tensor online ########################
|
|
|
|
|
# xs1 = paddle.rand(shape=[1, 67, 80], dtype='float32')
|
|
|
|
|
# offset = paddle.to_tensor([0], dtype='int32')
|
|
|
|
|
# required_cache_size = -16
|
|
|
|
|
# att_cache = paddle.zeros([0, 0, 0, 0])
|
|
|
|
|
# cnn_cache=paddle.zeros([0, 0, 0, 0])
|
|
|
|
|
|
|
|
|
|
# xs, att_cache, cnn_cache = infer_model.forward_encoder_chunk(xs1, offset, required_cache_size, att_cache, cnn_cache)
|
|
|
|
|
# xs2 = paddle.rand(shape=[1, 67, 80], dtype='float32')
|
|
|
|
|
# offset = paddle.to_tensor([16], dtype='int32')
|
|
|
|
|
# out1 = infer_model.forward_encoder_chunk(xs2, offset, required_cache_size, att_cache, cnn_cache)
|
|
|
|
|
# # print(out1)
|
|
|
|
|
|
|
|
|
|
# input_spec = [
|
|
|
|
|
# paddle.static.InputSpec(shape=[1, None, 80], dtype='float32'),
|
|
|
|
|
# paddle.static.InputSpec(shape=[1], dtype='int32'),
|
|
|
|
|
# -16,
|
|
|
|
|
# paddle.static.InputSpec(shape=[None, None, None, None], dtype='float32'),
|
|
|
|
|
# paddle.static.InputSpec(shape=[None, None, None, None], dtype='float32')]
|
|
|
|
|
# static_model = paddle.jit.to_static(infer_model.forward_encoder_chunk, input_spec=input_spec)
|
|
|
|
|
# paddle.jit.save(static_model, self.args.export_path)
|
|
|
|
|
# static_model = paddle.jit.load(self.args.export_path)
|
|
|
|
|
|
|
|
|
|
# offset = paddle.to_tensor([0], dtype='int32')
|
|
|
|
|
# att_cache = paddle.zeros([0, 0, 0, 0])
|
|
|
|
|
# cnn_cache=paddle.zeros([0, 0, 0, 0])
|
|
|
|
|
# xs, att_cache, cnn_cache = static_model(xs1, offset, att_cache, cnn_cache)
|
|
|
|
|
# xs = paddle.rand(shape=[1, 67, 80], dtype='float32')
|
|
|
|
|
# offset = paddle.to_tensor([16], dtype='int32')
|
|
|
|
|
# out2 = static_model(xs2, offset, att_cache, cnn_cache)
|
|
|
|
|
# # print(out2)
|
|
|
|
|
|
|
|
|
|
# out1 = flatten(out1)
|
|
|
|
|
# out2 = flatten(out2)
|
|
|
|
|
# for i in range(len(out1)):
|
|
|
|
|
# print(np.equal(out1[i].numpy(), out2[i].numpy()).all())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
###################### save/load combine ########################
|
|
|
|
|
paddle.jit.save(infer_model, '/workspace/conformer/PaddleSpeech-conformer/conformer/conformer', combine_params=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# xs1 = paddle.rand(shape=[1, 67, 80], dtype='float32')
|
|
|
|
|
# offset = paddle.to_tensor([0], dtype='int32')
|
|
|
|
|
# required_cache_size = -16
|
|
|
|
|
# att_cache = paddle.zeros([0, 0, 0, 0])
|
|
|
|
|
# cnn_cache=paddle.zeros([0, 0, 0, 0])
|
|
|
|
|
|
|
|
|
|
# xs, att_cache, cnn_cache = infer_model.forward_encoder_chunk(xs1, offset, required_cache_size, att_cache, cnn_cache)
|
|
|
|
|
# xs2 = paddle.rand(shape=[1, 67, 80], dtype='float32')
|
|
|
|
|
# offset = paddle.to_tensor([16], dtype='int32')
|
|
|
|
|
# out1 = infer_model.forward_encoder_chunk(xs2, offset, required_cache_size, att_cache, cnn_cache)
|
|
|
|
|
# # print(out1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# from paddle.jit.layer import Layer
|
|
|
|
|
# layer = Layer()
|
|
|
|
|
# layer.load('/workspace/conformer/PaddleSpeech-conformer/conformer/conformer', paddle.CUDAPlace(0))
|
|
|
|
|
|
|
|
|
|
# offset = paddle.to_tensor([0], dtype='int32')
|
|
|
|
|
# att_cache = paddle.zeros([0, 0, 0, 0])
|
|
|
|
|
# cnn_cache=paddle.zeros([0, 0, 0, 0])
|
|
|
|
|
# xs, att_cache, cnn_cache = layer.forward_encoder_chunk(xs1, offset, att_cache, cnn_cache)
|
|
|
|
|
# offset = paddle.to_tensor([16], dtype='int32')
|
|
|
|
|
# out2 = layer.forward_encoder_chunk(xs2, offset, att_cache, cnn_cache)
|
|
|
|
|
# # print(out2)
|
|
|
|
|
|
|
|
|
|
# out1 = flatten(out1)
|
|
|
|
|
# out2 = flatten(out2)
|
|
|
|
|
# for i in range(len(out1)):
|
|
|
|
|
# print(np.equal(out1[i].numpy(), out2[i].numpy()).all())
|