parent
6cc80c0aff
commit
4dc75c40c9
@ -0,0 +1,8 @@
|
||||
[
|
||||
{
|
||||
"type": "shift",
|
||||
"params": {"min_shift_ms": -5,
|
||||
"max_shift_ms": 5},
|
||||
"prob": 1.0
|
||||
}
|
||||
]
|
@ -0,0 +1,39 @@
|
||||
# https://yaml.org/type/float.html
|
||||
data:
|
||||
train_manifest: data/manifest.tiny
|
||||
dev_manifest: data/manifest.tiny
|
||||
test_manifest: data/manifest.tiny
|
||||
mean_std_filepath: data/mean_std.npz
|
||||
vocab_filepath: data/vocab.txt
|
||||
augmentation_config: conf/augmentation.config
|
||||
batch_size: 4
|
||||
max_duration: 27.0
|
||||
min_duration: 0.0
|
||||
specgram_type: linear
|
||||
target_sample_rate: 16000
|
||||
max_freq: None
|
||||
n_fft: None
|
||||
stride_ms: 10.0
|
||||
window_ms: 20.0
|
||||
use_dB_normalization: True
|
||||
target_dB: -20
|
||||
random_seed: 0
|
||||
keep_transcription_text: False
|
||||
sortagrad: True
|
||||
shuffle_method: batch_shuffle
|
||||
num_workers: 0
|
||||
model:
|
||||
num_conv_layers: 2
|
||||
num_rnn_layers: 3
|
||||
rnn_layer_size: 2048
|
||||
use_gru: False
|
||||
share_rnn_weights: True
|
||||
training:
|
||||
n_epoch: 20
|
||||
lr: 1e-5
|
||||
weight_decay: 1e-06
|
||||
global_grad_clip: 400.0
|
||||
max_iteration: 500000
|
||||
plot_interval: 1000
|
||||
save_interval: 1000
|
||||
valid_interval: 1000
|
@ -0,0 +1,104 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from network2 import DeepSpeech2
|
||||
import paddle
|
||||
import numpy as np
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
batch_size = 2
|
||||
feat_dim = 161
|
||||
max_len = 100
|
||||
audio = np.random.randn(batch_size, feat_dim, max_len)
|
||||
audio_len = np.random.randint(100, size=batch_size, dtype='int32')
|
||||
audio_len[-1] = 100
|
||||
text = np.array([[1, 2], [1, 2]], dtype='int32')
|
||||
text_len = np.array([2] * batch_size, dtype='int32')
|
||||
|
||||
place = paddle.CUDAPinnedPlace()
|
||||
audio = paddle.to_tensor(
|
||||
audio, dtype='float32', place=place, stop_gradient=True)
|
||||
audio_len = paddle.to_tensor(
|
||||
audio_len, dtype='int64', place=place, stop_gradient=True)
|
||||
text = paddle.to_tensor(
|
||||
text, dtype='int32', place=place, stop_gradient=True)
|
||||
text_len = paddle.to_tensor(
|
||||
text_len, dtype='int64', place=place, stop_gradient=True)
|
||||
|
||||
print(audio.shape)
|
||||
print(audio_len.shape)
|
||||
print(text.shape)
|
||||
print(text_len.shape)
|
||||
print("-----------------")
|
||||
|
||||
model = DeepSpeech2(
|
||||
feat_size=feat_dim,
|
||||
dict_size=10,
|
||||
num_conv_layers=2,
|
||||
num_rnn_layers=3,
|
||||
rnn_size=1024,
|
||||
use_gru=False,
|
||||
share_rnn_weights=False, )
|
||||
probs = model(audio, text, audio_len, text_len)
|
||||
print('probs.shape', probs.shape)
|
||||
print("-----------------")
|
||||
|
||||
model2 = DeepSpeech2(
|
||||
feat_size=feat_dim,
|
||||
dict_size=10,
|
||||
num_conv_layers=2,
|
||||
num_rnn_layers=3,
|
||||
rnn_size=1024,
|
||||
use_gru=True,
|
||||
share_rnn_weights=False, )
|
||||
probs = model2(audio, text, audio_len, text_len)
|
||||
print('probs.shape', probs.shape)
|
||||
print("-----------------")
|
||||
|
||||
model3 = DeepSpeech2(
|
||||
feat_size=feat_dim,
|
||||
dict_size=10,
|
||||
num_conv_layers=2,
|
||||
num_rnn_layers=3,
|
||||
rnn_size=1024,
|
||||
use_gru=False,
|
||||
share_rnn_weights=True, )
|
||||
probs = model3(audio, text, audio_len, text_len)
|
||||
print('probs.shape', probs.shape)
|
||||
print("-----------------")
|
||||
|
||||
model4 = DeepSpeech2(
|
||||
feat_size=feat_dim,
|
||||
dict_size=10,
|
||||
num_conv_layers=2,
|
||||
num_rnn_layers=3,
|
||||
rnn_size=1024,
|
||||
use_gru=True,
|
||||
share_rnn_weights=True, )
|
||||
probs = model4(audio, text, audio_len, text_len)
|
||||
print('probs.shape', probs.shape)
|
||||
print("-----------------")
|
||||
|
||||
model5 = DeepSpeech2(
|
||||
feat_size=feat_dim,
|
||||
dict_size=10,
|
||||
num_conv_layers=2,
|
||||
num_rnn_layers=3,
|
||||
rnn_size=1024,
|
||||
use_gru=False,
|
||||
share_rnn_weights=False, )
|
||||
probs = model5(audio, text, audio_len, text_len)
|
||||
print('probs.shape', probs.shape)
|
||||
print("-----------------")
|
Loading…
Reference in new issue