|
|
|
@ -24,10 +24,10 @@ class CustomDataset(AudioClassificationDataset):
|
|
|
|
|
'dog',
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
files, labels = self._get_data()
|
|
|
|
|
super(CustomDataset, self).__init__(
|
|
|
|
|
files=files, labels=labels, feat_type='raw')
|
|
|
|
|
files=files, labels=labels, feat_type='raw', **kwargs)
|
|
|
|
|
|
|
|
|
|
def _get_data(self):
|
|
|
|
|
'''
|
|
|
|
@ -53,8 +53,9 @@ from paddleaudio.features import LogMelSpectrogram
|
|
|
|
|
from custom_dataset import CustomDataset
|
|
|
|
|
|
|
|
|
|
# Feature config should be align with pretrained model
|
|
|
|
|
sample_rate = 32000
|
|
|
|
|
feat_conf = {
|
|
|
|
|
'sr': 32000,
|
|
|
|
|
'sr': sample_rate,
|
|
|
|
|
'n_fft': 1024,
|
|
|
|
|
'hop_length': 320,
|
|
|
|
|
'window': 'hann',
|
|
|
|
@ -64,7 +65,7 @@ feat_conf = {
|
|
|
|
|
'n_mels': 64,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
train_ds = CustomDataset()
|
|
|
|
|
train_ds = CustomDataset(sample_rate=sample_rate)
|
|
|
|
|
feature_extractor = LogMelSpectrogram(**feat_conf)
|
|
|
|
|
|
|
|
|
|
train_sampler = paddle.io.DistributedBatchSampler(
|
|
|
|
|