diff --git a/README.md b/README.md
index 6c92f1ec9..6e7dd2a44 100644
--- a/README.md
+++ b/README.md
@@ -486,18 +486,18 @@ python deploy/demo_client.py --help
Language | Model Name | Training Data | Hours of Speech
:-----------: | :------------: | :----------: | -------:
-English | [LibriSpeech Model](http://cloud.dlnel.org/filepub/?uuid=117cde63-cd59-4948-8b80-df782555f7d6) | [LibriSpeech Dataset](http://www.openslr.org/12/) | 960 h
-English | [BaiduEN8k Model](http://cloud.dlnel.org/filepub/?uuid=37a1c211-ec47-494c-973c-31437a10ae90) | Baidu Internal English Dataset | 8628 h
-Mandarin | [Aishell Model](http://cloud.dlnel.org/filepub/?uuid=61de63b9-6904-4809-ad95-0cc5104ab973) | [Aishell Dataset](http://www.openslr.org/33/) | 151 h
-Mandarin | [BaiduCN1.2k Model](http://cloud.dlnel.org/filepub/?uuid=499569a6-0025-4f40-83e6-1c99527431a6) | Baidu Internal Mandarin Dataset | 1204 h
+English | [LibriSpeech Model](https://deepspeech.bj.bcebos.com/eng_models/librispeech_model.tar.gz) | [LibriSpeech Dataset](http://www.openslr.org/12/) | 960 h
+English | [BaiduEN8k Model](https://deepspeech.bj.bcebos.com/demo_models/baidu_en8k_model.tar.gz) | Baidu Internal English Dataset | 8628 h
+Mandarin | [Aishell Model](https://deepspeech.bj.bcebos.com/mandarin_models/aishell_model.tar.gz) | [Aishell Dataset](http://www.openslr.org/33/) | 151 h
+Mandarin | [BaiduCN1.2k Model](https://deepspeech.bj.bcebos.com/demo_models/baidu_cn1.2k_model.tar.gz) | Baidu Internal Mandarin Dataset | 1204 h
#### Language Model Released
Language Model | Training Data | Token-based | Size | Descriptions
:-------------:| :------------:| :-----: | -----: | :-----------------
-[English LM](http://paddlepaddle.bj.bcebos.com/model_zoo/speech/common_crawl_00.prune01111.trie.klm) | [CommonCrawl(en.00)](http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/en/deduped/en.00.deduped.xz) | Word-based | 8.3 GB | Pruned with 0 1 1 1 1;
About 1.85 billion n-grams;
'trie' binary with '-a 22 -q 8 -b 8'
-[Mandarin LM Small](http://cloud.dlnel.org/filepub/?uuid=d21861e4-4ed6-45bb-ad8e-ae417a43195e) | Baidu Internal Corpus | Char-based | 2.8 GB | Pruned with 0 1 2 4 4;
About 0.13 billion n-grams;
'probing' binary with default settings
-[Mandarin LM Large](http://cloud.dlnel.org/filepub/?uuid=245d02bb-cd01-4ebe-b079-b97be864ec37) | Baidu Internal Corpus | Char-based | 70.4 GB | No Pruning;
About 3.7 billion n-grams;
'probing' binary with default settings
+[English LM](https://deepspeech.bj.bcebos.com/en_lm/common_crawl_00.prune01111.trie.klm) | [CommonCrawl(en.00)](http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/en/deduped/en.00.deduped.xz) | Word-based | 8.3 GB | Pruned with 0 1 1 1 1;
About 1.85 billion n-grams;
'trie' binary with '-a 22 -q 8 -b 8'
+[Mandarin LM Small](https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm) | Baidu Internal Corpus | Char-based | 2.8 GB | Pruned with 0 1 2 4 4;
About 0.13 billion n-grams;
'probing' binary with default settings
+[Mandarin LM Large](https://deepspeech.bj.bcebos.com/zh_lm/zhidao_giga.klm) | Baidu Internal Corpus | Char-based | 70.4 GB | No Pruning;
About 3.7 billion n-grams;
'probing' binary with default settings
## Experiments and Benchmarks
diff --git a/README_cn.md b/README_cn.md
index d4d80ecc9..c2304dcb6 100644
--- a/README_cn.md
+++ b/README_cn.md
@@ -55,14 +55,14 @@ sh setup.sh
cd examples/tiny
```
- 注意这仅仅是LibriSpeech一个小数据集的例子。如果你想尝试完整的数据集(可能需要花好几天来训练模型),请使用这个路径`examples/librispeech`。
+ 注意这仅仅是LibriSpeech一个小数据集的例子。如果你想尝试完整的数据集(可能需要花好几天来训练模型),请使用这个路径`examples/librispeech`。
- 准备数据
```bash
sh run_data.sh
```
- 运行`run_data.sh`脚本将会下载数据集,产出manifests文件,收集一些归一化需要的统计信息并建立词表。当数据准备完成之后,下载完的数据(仅有LibriSpeech一部分)在`~/.cache/paddle/dataset/speech/libri`中;其对应的manifest文件,均值标准差和词表文件在`./data/tiny`中。在第一次执行的时候一定要执行这个脚本,在接下来所有的实验中我们都会用到这个数据集。
+ 运行`run_data.sh`脚本将会下载数据集,产出manifests文件,收集一些归一化需要的统计信息并建立词表。当数据准备完成之后,下载完的数据(仅有LibriSpeech一部分)在`~/.cache/paddle/dataset/speech/libri`中;其对应的manifest文件,均值标准差和词表文件在`./data/tiny`中。在第一次执行的时候一定要执行这个脚本,在接下来所有的实验中我们都会用到这个数据集。
- 训练你自己的ASR模型
```bash
@@ -163,7 +163,7 @@ python tools/build_vocab.py --help
```
python train.py --use_gpu False --trainer_count 16
```
-
+
- 从检查点恢复训练:
```
@@ -233,7 +233,7 @@ sh download_lm_ch.sh
#### 英语语言模型
英语语料库来自[Common Crawl Repository](http://commoncrawl.org),您可以从[statmt](http://data.statmt.org/ngrams/deduped_en)下载它。我们使用en.00部分来训练我们的英语语言模型。训练前有一些预处理步骤如下:
-
+
* 不在\[A-Za-z0-9\s'\](\s表示空白字符)中的字符将被删除,阿拉伯数字被转换为英文数字,比如“1000”转换为one thousand。
* 重复的空白字符被压缩为一个,并且开始的空白字符将被删除。请注意,所有的录音都是小写字母,因此所有字符都转换为小写字母。
* 选择前40万个最常用的单词来建立词表,其余部分将被替换为“UNKNOWNWORD”。
@@ -414,7 +414,7 @@ sudo nvidia-docker run -it -v $(pwd)/DeepSpeech:/DeepSpeech paddlepaddle/deep_sp
一个训练任务已经提交给PaddleCloud,并将任务名输出到控制台。
- 获取训练日志
-
+
执行以下命令以列出你提交的所有任务以及它们的运行状态:
```bash
@@ -422,7 +422,7 @@ sudo nvidia-docker run -it -v $(pwd)/DeepSpeech:/DeepSpeech paddlepaddle/deep_sp
```
运行此操作,将打印相应的任务日志。
-
+
```bash
paddlecloud logs -n 10000 $REPLACED_WITH_YOUR_ACTUAL_JOB_NAME
```
@@ -488,18 +488,18 @@ python deploy/demo_client.py --help
语种 | 模型名 | 训练数据 | 语音时长
:-----------: | :------------: | :----------: | -------:
-English | [LibriSpeech Model](http://cloud.dlnel.org/filepub/?uuid=117cde63-cd59-4948-8b80-df782555f7d6) | [LibriSpeech Dataset](http://www.openslr.org/12/) | 960 h
-English | [BaiduEN8k Model](http://cloud.dlnel.org/filepub/?uuid=37a1c211-ec47-494c-973c-31437a10ae90) | Baidu Internal English Dataset | 8628 h
-Mandarin | [Aishell Model](http://cloud.dlnel.org/filepub/?uuid=61de63b9-6904-4809-ad95-0cc5104ab973) | [Aishell Dataset](http://www.openslr.org/33/) | 151 h
-Mandarin | [BaiduCN1.2k Model](http://cloud.dlnel.org/filepub/?uuid=499569a6-0025-4f40-83e6-1c99527431a6) | Baidu Internal Mandarin Dataset | 1204 h
+English | [LibriSpeech Model](https://deepspeech.bj.bcebos.com/eng_models/librispeech_model.tar.gz) | [LibriSpeech Dataset](http://www.openslr.org/12/) | 960 h
+English | [BaiduEN8k Model](https://deepspeech.bj.bcebos.com/demo_models/baidu_en8k_model.tar.gz) | Baidu Internal English Dataset | 8628 h
+Mandarin | [Aishell Model](https://deepspeech.bj.bcebos.com/mandarin_models/aishell_model.tar.gz) | [Aishell Dataset](http://www.openslr.org/33/) | 151 h
+Mandarin | [BaiduCN1.2k Model](https://deepspeech.bj.bcebos.com/demo_models/baidu_cn1.2k_model.tar.gz) | Baidu Internal Mandarin Dataset | 1204 h
#### 语言模型发布
语言模型 | 训练数据 | 基于的字符 | 大小 | 描述
:-------------:| :------------:| :-----: | -----: | :-----------------
-[English LM](http://paddlepaddle.bj.bcebos.com/model_zoo/speech/common_crawl_00.prune01111.trie.klm) | [CommonCrawl(en.00)](http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/en/deduped/en.00.deduped.xz) | Word-based | 8.3 GB | Pruned with 0 1 1 1 1;
About 1.85 billion n-grams;
'trie' binary with '-a 22 -q 8 -b 8'
-[Mandarin LM Small](http://cloud.dlnel.org/filepub/?uuid=d21861e4-4ed6-45bb-ad8e-ae417a43195e) | Baidu Internal Corpus | Char-based | 2.8 GB | Pruned with 0 1 2 4 4;
About 0.13 billion n-grams;
'probing' binary with default settings
-[Mandarin LM Large](http://cloud.dlnel.org/filepub/?uuid=245d02bb-cd01-4ebe-b079-b97be864ec37) | Baidu Internal Corpus | Char-based | 70.4 GB | No Pruning;
About 3.7 billion n-grams;
'probing' binary with default settings
+[English LM](https://deepspeech.bj.bcebos.com/en_lm/common_crawl_00.prune01111.trie.klm) | [CommonCrawl(en.00)](http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/en/deduped/en.00.deduped.xz) | Word-based | 8.3 GB | Pruned with 0 1 1 1 1;
About 1.85 billion n-grams;
'trie' binary with '-a 22 -q 8 -b 8'
+[Mandarin LM Small](https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm) | Baidu Internal Corpus | Char-based | 2.8 GB | Pruned with 0 1 2 4 4;
About 0.13 billion n-grams;
'probing' binary with default settings
+[Mandarin LM Large](https://deepspeech.bj.bcebos.com/zh_lm/zhidao_giga.klm) | Baidu Internal Corpus | Char-based | 70.4 GB | No Pruning;
About 3.7 billion n-grams;
'probing' binary with default settings
## 实验和基准
@@ -543,4 +543,3 @@ Baidu Internal Testset | 12.64
## 问题和帮助
欢迎您在[Github问题](https://github.com/PaddlePaddle/models/issues)中提交问题和bug。也欢迎您为这个项目做出贡献。
-