From 3c93953550d5a8a04382a3cc181370b6da2fe74c Mon Sep 17 00:00:00 2001 From: Jackwaterveg <87408988+Jackwaterveg@users.noreply.github.com> Date: Fri, 8 Apr 2022 11:23:17 +0800 Subject: [PATCH] test=doc --- examples/librispeech/asr2/README.md | 32 +++++------------------------ 1 file changed, 5 insertions(+), 27 deletions(-) diff --git a/examples/librispeech/asr2/README.md b/examples/librispeech/asr2/README.md index 7d6fe11d..209a2078 100644 --- a/examples/librispeech/asr2/README.md +++ b/examples/librispeech/asr2/README.md @@ -213,17 +213,14 @@ avg.sh latest exp/transformer/checkpoints 10 ./local/recog.sh --ckpt_prefix exp/transformer/checkpoints/avg_10 ``` ## Pretrained Model -You can get the pretrained transformer using the scripts below: -```bash -# Transformer: -wget https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr2/transformer.model.tar.gz -``` +You can get the pretrained models from [this](../../../docs/source/released_model.md). + using the `tar` scripts to unpack the model and then you can use the script to test the model. For example: ```bash -wget https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr2/transformer.model.tar.gz -tar xzvf transformer.model.tar.gz +wget https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr2/asr2_transformer_librispeech_ckpt_0.1.1.model.tar.gz +tar xzvf asr2_transformer_librispeech_ckpt_0.1.1.model.tar.gz source path.sh # If you have process the data and get the manifest fileļ¼Œ you can skip the following 2 steps bash local/data.sh --stage -1 --stop_stage -1 @@ -231,26 +228,7 @@ bash local/data.sh --stage 2 --stop_stage 2 CUDA_VISIBLE_DEVICES= ./local/test.sh conf/transformer.yaml exp/ctc/checkpoints/avg_10 ``` -The performance of the released models are shown below: -### Transformer -| Model | Params | GPUS | Averaged Model | Config | Augmentation | Loss | -| :---------: | :----: | :--------------------: | :--------------: | :-------------------: | :----------: | :-------------: | -| transformer | 32.52M | 8 Tesla V100-SXM2-32GB | 10-best val_loss | conf/transformer.yaml | spec_aug | 6.3197922706604 | - -#### Attention Rescore -| Test Set | Decode Method | #Snt | #Wrd | Corr | Sub | Del | Ins | Err | S.Err | -| ---------- | --------------------- | ---- | ----- | ---- | ---- | ---- | ---- | ---- | ----- | -| test-clean | attention | 2620 | 52576 | 96.4 | 2.5 | 1.1 | 0.4 | 4.0 | 34.7 | -| test-clean | ctc_greedy_search | 2620 | 52576 | 95.9 | 3.7 | 0.4 | 0.5 | 4.6 | 48.0 | -| test-clean | ctc_prefix_beamsearch | 2620 | 52576 | 95.9 | 3.7 | 0.4 | 0.5 | 4.6 | 47.6 | -| test-clean | attention_rescore | 2620 | 52576 | 96.8 | 2.9 | 0.3 | 0.4 | 3.7 | 38.0 | - -#### JoinCTC -| Test Set | Decode Method | #Snt | #Wrd | Corr | Sub | Del | Ins | Err | S.Err | -| ---------- | ----------------- | ---- | ----- | ---- | ---- | ---- | ---- | ---- | ----- | -| test-clean | join_ctc_only_att | 2620 | 52576 | 96.1 | 2.5 | 1.4 | 0.4 | 4.4 | 34.7 | -| test-clean | join_ctc_w/o_lm | 2620 | 52576 | 97.2 | 2.6 | 0.3 | 0.4 | 3.2 | 34.9 | -| test-clean | join_ctc_w_lm | 2620 | 52576 | 97.9 | 1.8 | 0.2 | 0.3 | 2.4 | 27.8 | +The performance of the released models are shown [here](./RESULTS.md). Compare with [ESPNET](https://github.com/espnet/espnet/blob/master/egs/librispeech/asr1/RESULTS.md#pytorch-large-transformer-with-specaug-4-gpus--transformer-lm-4-gpus) we using 8gpu, but the model size (aheads4-adim256) small than it. ## Stage 5: CTC Alignment