@ -38,8 +38,6 @@ _C.data = CN(
target_sample_rate = 16000 , # target sample rate
use_dB_normalization = True ,
target_dB = - 20 ,
random_seed = 0 ,
keep_transcription_text = False ,
batch_size = 32 , # batch size
num_workers = 0 , # data loader workers
sortagrad = False , # sorted in first epoch when True
@ -55,6 +53,28 @@ _C.model = CN(
share_rnn_weights = True #Whether to share input-hidden weights between forward and backward directional RNNs.Notice that for GRU, weight sharing is not supported.
) )
_C . collator = CN (
dict (
augmentation_config = " " ,
random_seed = 0 ,
mean_std_filepath = " " ,
unit_type = " char " ,
vocab_filepath = " " ,
spm_model_prefix = " " ,
specgram_type = ' linear ' , # 'linear', 'mfcc', 'fbank'
feat_dim = 0 , # 'mfcc', 'fbank'
delta_delta = False , # 'mfcc', 'fbank'
stride_ms = 10.0 , # ms
window_ms = 20.0 , # ms
n_fft = None , # fft points
max_freq = None , # None for samplerate/2
target_sample_rate = 16000 , # target sample rate
use_dB_normalization = True ,
target_dB = - 20 ,
dither = 1.0 , # feature dither
keep_transcription_text = True
) )
DeepSpeech2Model . params ( _C . model )
_C . training = CN (