pull/2359/head
TianYuan 2 years ago
commit 35c6ffa90b

@ -613,7 +613,7 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
</td>
</tr>
<tr>
<td rowspan="3">Voice Cloning</td>
<td rowspan="4">Voice Cloning</td>
<td>GE2E</td>
<td >Librispeech, etc.</td>
<td>
@ -633,13 +633,20 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
<td>
<a href = "./examples/aishell3/vc1">ge2e-fastspeech2-aishell3</a>
</td>
</tr>
<tr>
<td>GE2E + VITS</td>
<td>AISHELL-3</td>
<td>
<a href = "./examples/aishell3/vits-vc">ge2e-vits-aishell3</a>
</td>
</tr>
<tr>
<td rowspan="3">End-to-End</td>
<td>VITS</td>
<td >CSMSC</td>
<td>CSMSC / AISHELL-3</td>
<td>
<a href = "./examples/csmsc/vits">VITS-csmsc</a>
<a href = "./examples/csmsc/vits">VITS-csmsc</a> / <a href = "./examples/aishell3/vits">VITS-aishell3</a>
</td>
</tr>
</tbody>

@ -164,6 +164,22 @@
- 🧩 级联模型应用: 作为传统语音任务的扩展,我们结合了自然语言处理、计算机视觉等任务,实现更接近实际需求的产业级应用。
### 近期活动
❗️重磅❗️飞桨智慧金融行业系列直播课
✅ 覆盖智能风控、智能运维、智能营销、智能客服四大金融主流场景
📆 9月6日-9月29日每周二、四19:00
+ 智慧金融行业深入洞察
+ 8节理论+实践精品直播课
+ 10+真实产业场景范例教学及实践
+ 更有免费算力+结业证书等礼品等你来拿
扫码报名码住直播链接,与行业精英深度交流
<div align="center">
<img src="https://user-images.githubusercontent.com/30135920/188431897-a02f028f-dd13-41e8-8ff6-749468cdc850.jpg" width = "200" />
</div>
### 近期更新
- 👑 2022.05.13: PaddleSpeech 发布 [PP-ASR](./docs/source/asr/PPASR_cn.md) 流式语音识别系统、[PP-TTS](./docs/source/tts/PPTTS_cn.md) 流式语音合成系统、[PP-VPR](docs/source/vpr/PPVPR_cn.md) 全链路声纹识别系统
@ -608,7 +624,7 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
</td>
</tr>
<tr>
<td rowspan="3">声音克隆</td>
<td rowspan="4">声音克隆</td>
<td>GE2E</td>
<td >Librispeech, etc.</td>
<td>
@ -629,13 +645,20 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
<a href = "./examples/aishell3/vc1">ge2e-fastspeech2-aishell3</a>
</td>
</tr>
<tr>
<td>GE2E + VITS</td>
<td>AISHELL-3</td>
<td>
<a href = "./examples/aishell3/vits-vc">ge2e-vits-aishell3</a>
</td>
</tr>
</tr>
<tr>
<td rowspan="3">端到端</td>
<td>VITS</td>
<td >CSMSC</td>
<td>CSMSC / AISHELL-3</td>
<td>
<a href = "./examples/csmsc/vits">VITS-csmsc</a>
<a href = "./examples/csmsc/vits">VITS-csmsc</a> / <a href = "./examples/aishell3/vits">VITS-aishell3</a>
</td>
</tr>
</tbody>

@ -226,6 +226,12 @@ recall and elapsed time statistics are shown in the following figure
The retrieval framework based on Milvus takes about 2.9 milliseconds to retrieve on the premise of 90% recall rate, and it takes about 500 milliseconds for feature extraction (testing audio takes about 5 seconds), that is, a single audio test takes about 503 milliseconds in total, which can meet most application scenarios.
* compute embeding takes 500 ms
* retrieval with cosine takes 2.9 ms
* total takes 503 ms
> test audio is 5 sec
### 6.Pretrained Models
Here is a list of pretrained models released by PaddleSpeech :

@ -26,8 +26,9 @@ def get_audios(path):
"""
supported_formats = [".wav", ".mp3", ".ogg", ".flac", ".m4a"]
return [
item for sublist in [[os.path.join(dir, file) for file in files]
for dir, _, files in list(os.walk(path))]
item
for sublist in [[os.path.join(dir, file) for file in files]
for dir, _, files in list(os.walk(path))]
for item in sublist if os.path.splitext(item)[1] in supported_formats
]

@ -1,3 +1,5 @@
([简体中文](./README_cn.md)|English)
# Metaverse
## Introduction
Metaverse is a new Internet application and social form integrating virtual reality produced by integrating a variety of new technologies.

@ -0,0 +1,27 @@
(简体中文|[English](./README.md))
# Metaverse
## 简介
Metaverse 是一种新的互联网应用和社交形式,融合了多种新技术,产生了虚拟现实。
这个演示是一个让图片中的名人“说话”的实现。通过 `PaddleSpeech``TTS` 模块和 `PaddleGAN` 的组合,我们集成了安装和特定模块到一个 shell 脚本中。
## 使用
您可以使用 `PaddleSpeech``TTS` 模块和 `PaddleGAN` 让您最喜欢的人说出指定的内容,并构建您的虚拟人。
运行 `run.sh` 完成所有基本程序,包括安装。
```bash
./run.sh
```
`run.sh`, 先会执行 `source path.sh` 来设置好环境变量。
如果您想尝试您的句子,请替换 `sentences.txt` 中的句子。
如果您想尝试图像,请将图像替换 shell 脚本中的 `download/Lamarr.png`
结果已显示在我们的 [notebook](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/tutorial/tts/tts_tutorial.ipynb)。

@ -19,6 +19,7 @@ The input of this cli demo should be a WAV file(`.wav`), and the sample rate mus
Here are sample files for this demo that can be downloaded:
```bash
wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
wget -c https://paddlespeech.bj.bcebos.com/vector/audio/123456789.wav
```
### 3. Usage

@ -19,6 +19,7 @@
```bash
# 该音频的内容是数字串 85236145389
wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
wget -c https://paddlespeech.bj.bcebos.com/vector/audio/123456789.wav
```
### 3. 使用方法
- 命令行 (推荐使用)

@ -401,4 +401,4 @@ curl -X 'GET' \
"code": 0,
"result":"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"message": "ok"
```
```

@ -3,48 +3,48 @@
# 2. 接收录音音频,返回识别结果
# 3. 接收ASR识别结果返回NLP对话结果
# 4. 接收NLP对话结果返回TTS音频
import argparse
import base64
import yaml
import os
import json
import datetime
import json
import os
from typing import List
import aiofiles
import librosa
import soundfile as sf
import numpy as np
import argparse
import uvicorn
import aiofiles
from typing import Optional, List
from pydantic import BaseModel
from fastapi import FastAPI, Header, File, UploadFile, Form, Cookie, WebSocket, WebSocketDisconnect
from fastapi import FastAPI
from fastapi import File
from fastapi import Form
from fastapi import UploadFile
from fastapi import WebSocket
from fastapi import WebSocketDisconnect
from fastapi.responses import StreamingResponse
from starlette.responses import FileResponse
from starlette.middleware.cors import CORSMiddleware
from starlette.requests import Request
from starlette.websockets import WebSocketState as WebSocketState
from pydantic import BaseModel
from src.AudioManeger import AudioMannger
from src.util import *
from src.robot import Robot
from src.WebsocketManeger import ConnectionManager
from src.SpeechBase.vpr import VPR
from src.util import *
from src.WebsocketManeger import ConnectionManager
from starlette.middleware.cors import CORSMiddleware
from starlette.requests import Request
from starlette.responses import FileResponse
from starlette.websockets import WebSocketState as WebSocketState
from paddlespeech.server.engine.asr.online.python.asr_engine import PaddleASRConnectionHanddler
from paddlespeech.server.utils.audio_process import float2pcm
# 解析配置
parser = argparse.ArgumentParser(
prog='PaddleSpeechDemo', add_help=True)
parser = argparse.ArgumentParser(prog='PaddleSpeechDemo', add_help=True)
parser.add_argument(
"--port",
action="store",
type=int,
help="port of the app",
default=8010,
required=False)
"--port",
action="store",
type=int,
help="port of the app",
default=8010,
required=False)
args = parser.parse_args()
port = args.port
@ -60,39 +60,41 @@ ie_model_path = "source/model"
UPLOAD_PATH = "source/vpr"
WAV_PATH = "source/wav"
base_sources = [
UPLOAD_PATH, WAV_PATH
]
base_sources = [UPLOAD_PATH, WAV_PATH]
for path in base_sources:
os.makedirs(path, exist_ok=True)
# 初始化
app = FastAPI()
chatbot = Robot(asr_config, tts_config, asr_init_path, ie_model_path=ie_model_path)
chatbot = Robot(
asr_config, tts_config, asr_init_path, ie_model_path=ie_model_path)
manager = ConnectionManager()
aumanager = AudioMannger(chatbot)
aumanager.init()
vpr = VPR(db_path, dim = 192, top_k = 5)
vpr = VPR(db_path, dim=192, top_k=5)
# 服务配置
class NlpBase(BaseModel):
chat: str
class TtsBase(BaseModel):
text: str
text: str
class Audios:
def __init__(self) -> None:
self.audios = b""
audios = Audios()
######################################################################
########################### ASR 服务 #################################
#####################################################################
# 接收文件返回ASR结果
# 上传文件
@app.post("/asr/offline")
@ -101,7 +103,8 @@ async def speech2textOffline(files: List[UploadFile]):
asr_res = ""
for file in files[:1]:
# 生成时间戳
now_name = "asr_offline_" + datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
now_name = "asr_offline_" + datetime.datetime.strftime(
datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
out_file_path = os.path.join(WAV_PATH, now_name)
async with aiofiles.open(out_file_path, 'wb') as out_file:
content = await file.read() # async read
@ -110,10 +113,9 @@ async def speech2textOffline(files: List[UploadFile]):
# 返回ASR识别结果
asr_res = chatbot.speech2text(out_file_path)
return SuccessRequest(result=asr_res)
# else:
# return ErrorRequest(message="文件不是.wav格式")
return ErrorRequest(message="上传文件为空")
# 接收文件同时将wav强制转成16k, int16类型
@app.post("/asr/offlinefile")
async def speech2textOfflineFile(files: List[UploadFile]):
@ -121,7 +123,8 @@ async def speech2textOfflineFile(files: List[UploadFile]):
asr_res = ""
for file in files[:1]:
# 生成时间戳
now_name = "asr_offline_" + datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
now_name = "asr_offline_" + datetime.datetime.strftime(
datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
out_file_path = os.path.join(WAV_PATH, now_name)
async with aiofiles.open(out_file_path, 'wb') as out_file:
content = await file.read() # async read
@ -132,22 +135,18 @@ async def speech2textOfflineFile(files: List[UploadFile]):
wav = float2pcm(wav) # float32 to int16
wav_bytes = wav.tobytes() # to bytes
wav_base64 = base64.b64encode(wav_bytes).decode('utf8')
# 将文件重新写入
now_name = now_name[:-4] + "_16k" + ".wav"
out_file_path = os.path.join(WAV_PATH, now_name)
sf.write(out_file_path,wav,16000)
sf.write(out_file_path, wav, 16000)
# 返回ASR识别结果
asr_res = chatbot.speech2text(out_file_path)
response_res = {
"asr_result": asr_res,
"wav_base64": wav_base64
}
response_res = {"asr_result": asr_res, "wav_base64": wav_base64}
return SuccessRequest(result=response_res)
return ErrorRequest(message="上传文件为空")
return ErrorRequest(message="上传文件为空")
# 流式接收测试
@ -161,15 +160,17 @@ async def speech2textOnlineRecive(files: List[UploadFile]):
print(f"audios长度变化: {len(audios.audios)}")
return SuccessRequest(message="接收成功")
# 采集环境噪音大小
@app.post("/asr/collectEnv")
async def collectEnv(files: List[UploadFile]):
for file in files[:1]:
for file in files[:1]:
content = await file.read() # async read
# 初始化, wav 前44字节是头部信息
aumanager.compute_env_volume(content[44:])
vad_ = aumanager.vad_threshold
return SuccessRequest(result=vad_,message="采集环境噪音成功")
return SuccessRequest(result=vad_, message="采集环境噪音成功")
# 停止录音
@app.get("/asr/stopRecord")
@ -179,6 +180,7 @@ async def stopRecord():
print("Online录音暂停")
return SuccessRequest(message="停止成功")
# 恢复录音
@app.get("/asr/resumeRecord")
async def resumeRecord():
@ -187,7 +189,7 @@ async def resumeRecord():
return SuccessRequest(message="Online录音恢复")
# 聊天用的ASR
# 聊天用的 ASR
@app.websocket("/ws/asr/offlineStream")
async def websocket_endpoint(websocket: WebSocket):
await manager.connect(websocket)
@ -210,9 +212,9 @@ async def websocket_endpoint(websocket: WebSocket):
# print(f"用户-{user}-离开")
# Online识别的ASR
# 流式识别的 ASR
@app.websocket('/ws/asr/onlineStream')
async def websocket_endpoint(websocket: WebSocket):
async def websocket_endpoint_online(websocket: WebSocket):
"""PaddleSpeech Online ASR Server api
Args:
@ -298,12 +300,14 @@ async def websocket_endpoint(websocket: WebSocket):
except WebSocketDisconnect:
pass
######################################################################
########################### NLP 服务 #################################
#####################################################################
@app.post("/nlp/chat")
async def chatOffline(nlp_base:NlpBase):
async def chatOffline(nlp_base: NlpBase):
chat = nlp_base.chat
if not chat:
return ErrorRequest(message="传入文本为空")
@ -311,8 +315,9 @@ async def chatOffline(nlp_base:NlpBase):
res = chatbot.chat(chat)
return SuccessRequest(result=res)
@app.post("/nlp/ie")
async def ieOffline(nlp_base:NlpBase):
async def ieOffline(nlp_base: NlpBase):
nlp_text = nlp_base.chat
if not nlp_text:
return ErrorRequest(message="传入文本为空")
@ -320,17 +325,20 @@ async def ieOffline(nlp_base:NlpBase):
res = chatbot.ie(nlp_text)
return SuccessRequest(result=res)
######################################################################
########################### TTS 服务 #################################
#####################################################################
@app.post("/tts/offline")
async def text2speechOffline(tts_base:TtsBase):
async def text2speechOffline(tts_base: TtsBase):
text = tts_base.text
if not text:
return ErrorRequest(message="文本为空")
else:
now_name = "tts_"+ datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
now_name = "tts_" + datetime.datetime.strftime(
datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
out_file_path = os.path.join(WAV_PATH, now_name)
# 保存为文件再转成base64传输
chatbot.text2speech(text, outpath=out_file_path)
@ -339,12 +347,14 @@ async def text2speechOffline(tts_base:TtsBase):
base_str = base64.b64encode(data_bin)
return SuccessRequest(result=base_str)
# http流式TTS
@app.post("/tts/online")
async def stream_tts(request_body: TtsBase):
text = request_body.text
return StreamingResponse(chatbot.text2speechStreamBytes(text=text))
# ws流式TTS
@app.websocket("/ws/tts/online")
async def stream_ttsWS(websocket: WebSocket):
@ -356,17 +366,11 @@ async def stream_ttsWS(websocket: WebSocket):
if text:
for sub_wav in chatbot.text2speechStream(text=text):
# print("发送sub wav: ", len(sub_wav))
res = {
"wav": sub_wav,
"done": False
}
res = {"wav": sub_wav, "done": False}
await websocket.send_json(res)
# 输送结束
res = {
"wav": sub_wav,
"done": True
}
res = {"wav": sub_wav, "done": True}
await websocket.send_json(res)
# manager.disconnect(websocket)
@ -396,8 +400,9 @@ async def vpr_enroll(table_name: str=None,
return {'status': False, 'msg': "spk_id can not be None"}
# Save the upload data to server.
content = await audio.read()
now_name = "vpr_enroll_" + datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
audio_path = os.path.join(UPLOAD_PATH, now_name)
now_name = "vpr_enroll_" + datetime.datetime.strftime(
datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
audio_path = os.path.join(UPLOAD_PATH, now_name)
with open(audio_path, "wb+") as f:
f.write(content)
@ -413,20 +418,19 @@ async def vpr_recog(request: Request,
audio: UploadFile=File(...)):
# Voice print recognition online
# try:
# Save the upload data to server.
# Save the upload data to server.
content = await audio.read()
now_name = "vpr_query_" + datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
query_audio_path = os.path.join(UPLOAD_PATH, now_name)
now_name = "vpr_query_" + datetime.datetime.strftime(
datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
query_audio_path = os.path.join(UPLOAD_PATH, now_name)
with open(query_audio_path, "wb+") as f:
f.write(content)
f.write(content)
spk_ids, paths, scores = vpr.do_search_vpr(query_audio_path)
res = dict(zip(spk_ids, zip(paths, scores)))
# Sort results by distance metric, closest distances first
res = sorted(res.items(), key=lambda item: item[1][1], reverse=True)
return res
# except Exception as e:
# return {'status': False, 'msg': e}, 400
@app.post('/vpr/del')
@ -460,17 +464,18 @@ async def vpr_database64(vprId: int):
return {'status': False, 'msg': "vpr_id can not be None"}
audio_path = vpr.do_get_wav(vprId)
# 返回base64
# 将文件转成16k, 16bit类型的wav文件
wav, sr = librosa.load(audio_path, sr=16000)
wav = float2pcm(wav) # float32 to int16
wav_bytes = wav.tobytes() # to bytes
wav_base64 = base64.b64encode(wav_bytes).decode('utf8')
return SuccessRequest(result=wav_base64)
except Exception as e:
return {'status': False, 'msg': e}, 400
@app.get('/vpr/data')
async def vpr_data(vprId: int):
# Get the audio file from path by spk_id in MySQL
@ -482,11 +487,6 @@ async def vpr_data(vprId: int):
except Exception as e:
return {'status': False, 'msg': e}, 400
if __name__ == '__main__':
uvicorn.run(app=app, host='0.0.0.0', port=port)

@ -1,14 +1,13 @@
aiofiles
faiss-cpu
fastapi
librosa
numpy
paddlenlp
paddlepaddle
paddlespeech
pydantic
scikit_learn
python-multipartscikit_learn
SoundFile
starlette
uvicorn
paddlepaddle
paddlespeech
paddlenlp
faiss-cpu
python-multipart

@ -1,15 +1,19 @@
import imp
from queue import Queue
import numpy as np
import datetime
import os
import wave
import random
import datetime
import numpy as np
from .util import randName
class AudioMannger:
def __init__(self, robot, frame_length=160, frame=10, data_width=2, vad_default = 300):
def __init__(self,
robot,
frame_length=160,
frame=10,
data_width=2,
vad_default=300):
# 二进制 pcm 流
self.audios = b''
self.asr_result = ""
@ -20,8 +24,9 @@ class AudioMannger:
os.makedirs(self.file_dir, exist_ok=True)
self.vad_deafult = vad_default
self.vad_threshold = vad_default
self.vad_threshold_path = os.path.join(self.file_dir, "vad_threshold.npy")
self.vad_threshold_path = os.path.join(self.file_dir,
"vad_threshold.npy")
# 10ms 一帧
self.frame_length = frame_length
# 10帧检测一次 vad
@ -30,67 +35,64 @@ class AudioMannger:
self.data_width = data_width
# window
self.window_length = frame_length * frame * data_width
# 是否开始录音
self.on_asr = False
self.silence_cnt = 0
self.silence_cnt = 0
self.max_silence_cnt = 4
self.is_pause = False # 录音暂停与恢复
def init(self):
if os.path.exists(self.vad_threshold_path):
# 平均响度文件存在
self.vad_threshold = np.load(self.vad_threshold_path)
def clear_audio(self):
# 清空 pcm 累积片段与 asr 识别结果
self.audios = b''
def clear_asr(self):
self.asr_result = ""
def compute_chunk_volume(self, start_index, pcm_bins):
# 根据帧长计算能量平均值
pcm_bin = pcm_bins[start_index: start_index + self.window_length]
pcm_bin = pcm_bins[start_index:start_index + self.window_length]
# 转成 numpy
pcm_np = np.frombuffer(pcm_bin, np.int16)
# 归一化 + 计算响度
x = pcm_np.astype(np.float32)
x = np.abs(x)
return np.mean(x)
return np.mean(x)
def is_speech(self, start_index, pcm_bins):
# 检查是否没
if start_index > len(pcm_bins):
return False
# 检查从这个 start 开始是否为静音帧
energy = self.compute_chunk_volume(start_index=start_index, pcm_bins=pcm_bins)
energy = self.compute_chunk_volume(
start_index=start_index, pcm_bins=pcm_bins)
# print(energy)
if energy > self.vad_threshold:
return True
else:
return False
def compute_env_volume(self, pcm_bins):
max_energy = 0
start = 0
while start < len(pcm_bins):
energy = self.compute_chunk_volume(start_index=start, pcm_bins=pcm_bins)
energy = self.compute_chunk_volume(
start_index=start, pcm_bins=pcm_bins)
if energy > max_energy:
max_energy = energy
start += self.window_length
self.vad_threshold = max_energy + 100 if max_energy > self.vad_deafult else self.vad_deafult
# 保存成文件
np.save(self.vad_threshold_path, self.vad_threshold)
print(f"vad 阈值大小: {self.vad_threshold}")
print(f"环境采样保存: {os.path.realpath(self.vad_threshold_path)}")
def stream_asr(self, pcm_bin):
# 先把 pcm_bin 送进去做端点检测
start = 0
@ -99,7 +101,7 @@ class AudioMannger:
self.on_asr = True
self.silence_cnt = 0
print("录音中")
self.audios += pcm_bin[ start : start + self.window_length]
self.audios += pcm_bin[start:start + self.window_length]
else:
if self.on_asr:
self.silence_cnt += 1
@ -110,41 +112,42 @@ class AudioMannger:
print("录音停止")
# audios 保存为 wav, 送入 ASR
if len(self.audios) > 2 * 16000:
file_path = os.path.join(self.file_dir, "asr_" + datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav")
file_path = os.path.join(
self.file_dir,
"asr_" + datetime.datetime.strftime(
datetime.datetime.now(),
'%Y%m%d%H%M%S') + randName() + ".wav")
self.save_audio(file_path=file_path)
self.asr_result = self.robot.speech2text(file_path)
self.clear_audio()
return self.asr_result
return self.asr_result
else:
# 正常接收
print("录音中 静音")
self.audios += pcm_bin[ start : start + self.window_length]
self.audios += pcm_bin[start:start + self.window_length]
start += self.window_length
return ""
def save_audio(self, file_path):
print("保存音频")
wf = wave.open(file_path, 'wb') # 创建一个音频文件名字为“01.wav"
wf.setnchannels(1) # 设置声道数为2
wf.setsampwidth(2) # 设置采样深度为
wf.setframerate(16000) # 设置采样率为16000
wf = wave.open(file_path, 'wb') # 创建一个音频文件名字为“01.wav"
wf.setnchannels(1) # 设置声道数为2
wf.setsampwidth(2) # 设置采样深度为
wf.setframerate(16000) # 设置采样率为16000
# 将数据写入创建的音频文件
wf.writeframes(self.audios)
# 写完后将文件关闭
wf.close()
def end(self):
# audios 保存为 wav, 送入 ASR
file_path = os.path.join(self.file_dir, "asr.wav")
self.save_audio(file_path=file_path)
return self.robot.speech2text(file_path)
def stop(self):
self.is_pause = True
self.audios = b''
def resume(self):
self.is_pause = False

@ -1,13 +1,10 @@
from re import sub
import numpy as np
import paddle
import librosa
import soundfile
from paddlespeech.server.engine.asr.online.python.asr_engine import ASREngine
from paddlespeech.server.engine.asr.online.python.asr_engine import PaddleASRConnectionHanddler
from paddlespeech.server.utils.config import get_config
def readWave(samples):
x_len = len(samples)
@ -31,20 +28,23 @@ def readWave(samples):
class ASR:
def __init__(self, config_path, ) -> None:
def __init__(
self,
config_path, ) -> None:
self.config = get_config(config_path)['asr_online']
self.engine = ASREngine()
self.engine.init(self.config)
self.connection_handler = PaddleASRConnectionHanddler(self.engine)
def offlineASR(self, samples, sample_rate=16000):
x_chunk, x_chunk_lens = self.engine.preprocess(samples=samples, sample_rate=sample_rate)
x_chunk, x_chunk_lens = self.engine.preprocess(
samples=samples, sample_rate=sample_rate)
self.engine.run(x_chunk, x_chunk_lens)
result = self.engine.postprocess()
self.engine.reset()
return result
def onlineASR(self, samples:bytes=None, is_finished=False):
def onlineASR(self, samples: bytes=None, is_finished=False):
if not is_finished:
# 流式开始
self.connection_handler.extract_feat(samples)
@ -58,5 +58,3 @@ class ASR:
asr_results = self.connection_handler.get_result()
self.connection_handler.reset()
return asr_results

@ -1,23 +1,23 @@
from paddlenlp import Taskflow
class NLP:
def __init__(self, ie_model_path=None):
schema = ["时间", "出发地", "目的地", "费用"]
if ie_model_path:
self.ie_model = Taskflow("information_extraction",
schema=schema, task_path=ie_model_path)
self.ie_model = Taskflow(
"information_extraction",
schema=schema,
task_path=ie_model_path)
else:
self.ie_model = Taskflow("information_extraction",
schema=schema)
self.ie_model = Taskflow("information_extraction", schema=schema)
self.dialogue_model = Taskflow("dialogue")
def chat(self, text):
result = self.dialogue_model([text])
return result[0]
def ie(self, text):
result = self.ie_model(text)
return result

@ -1,18 +1,19 @@
import base64
import sqlite3
import os
import sqlite3
import numpy as np
from pkg_resources import resource_stream
def dict_factory(cursor, row):
d = {}
for idx, col in enumerate(cursor.description):
d[col[0]] = row[idx]
return d
def dict_factory(cursor, row):
d = {}
for idx, col in enumerate(cursor.description):
d[col[0]] = row[idx]
return d
class DataBase(object):
def __init__(self, db_path:str):
def __init__(self, db_path: str):
db_path = os.path.realpath(db_path)
if os.path.exists(db_path):
@ -21,12 +22,12 @@ class DataBase(object):
db_path_dir = os.path.dirname(db_path)
os.makedirs(db_path_dir, exist_ok=True)
self.db_path = db_path
self.conn = sqlite3.connect(self.db_path)
self.conn.row_factory = dict_factory
self.cursor = self.conn.cursor()
self.init_database()
def init_database(self):
"""
初始化数据库 若表不存在则创建
@ -41,20 +42,21 @@ class DataBase(object):
"""
self.cursor.execute(sql)
self.conn.commit()
def execute_base(self, sql, data_dict):
self.cursor.execute(sql, data_dict)
self.conn.commit()
def insert_one(self, username, vector_base64:str, wav_path):
def insert_one(self, username, vector_base64: str, wav_path):
if not os.path.exists(wav_path):
return None, "wav not exists"
else:
sql = f"""
sql = """
insert into
vprtable (username, vector, wavpath)
values (?, ?, ?)
"""
try:
self.cursor.execute(sql, (username, vector_base64, wav_path))
self.conn.commit()
@ -63,25 +65,27 @@ class DataBase(object):
except Exception as e:
print(e)
return None, e
def select_all(self):
sql = """
SELECT * from vprtable
"""
result = self.cursor.execute(sql).fetchall()
return result
def select_by_id(self, vpr_id):
sql = f"""
SELECT * from vprtable WHERE `id` = {vpr_id}
"""
result = self.cursor.execute(sql).fetchall()
return result
def select_by_username(self, username):
sql = f"""
SELECT * from vprtable WHERE `username` = '{username}'
"""
result = self.cursor.execute(sql).fetchall()
return result
@ -89,28 +93,30 @@ class DataBase(object):
sql = f"""
DELETE from vprtable WHERE `username`='{username}'
"""
self.cursor.execute(sql)
self.conn.commit()
def drop_all(self):
sql = f"""
sql = """
DELETE from vprtable
"""
self.cursor.execute(sql)
self.conn.commit()
def drop_table(self):
sql = f"""
sql = """
DROP TABLE vprtable
"""
self.cursor.execute(sql)
self.conn.commit()
def encode_vector(self, vector:np.ndarray):
def encode_vector(self, vector: np.ndarray):
return base64.b64encode(vector).decode('utf8')
def decode_vector(self, vector_base64, dtype=np.float32):
b = base64.b64decode(vector_base64)
vc = np.frombuffer(b, dtype=dtype)
return vc

@ -5,18 +5,19 @@
# 2. 加载模型
# 3. 端到端推理
# 4. 流式推理
import base64
import math
import logging
import math
import numpy as np
from paddlespeech.server.utils.onnx_infer import get_sess
from paddlespeech.t2s.frontend.zh_frontend import Frontend
from paddlespeech.server.utils.util import denorm, get_chunks
from paddlespeech.server.engine.tts.online.onnx.tts_engine import TTSEngine
from paddlespeech.server.utils.audio_process import float2pcm
from paddlespeech.server.utils.config import get_config
from paddlespeech.server.utils.util import denorm
from paddlespeech.server.utils.util import get_chunks
from paddlespeech.t2s.frontend.zh_frontend import Frontend
from paddlespeech.server.engine.tts.online.onnx.tts_engine import TTSEngine
class TTS:
def __init__(self, config_path):
@ -26,12 +27,12 @@ class TTS:
self.engine.init(self.config)
self.executor = self.engine.executor
#self.engine.warm_up()
# 前端初始化
self.frontend = Frontend(
phone_vocab_path=self.engine.executor.phones_dict,
tone_vocab_path=None)
phone_vocab_path=self.engine.executor.phones_dict,
tone_vocab_path=None)
def depadding(self, data, chunk_num, chunk_id, block, pad, upsample):
"""
Streaming inference removes the result of pad inference
@ -48,39 +49,37 @@ class TTS:
data = data[front_pad * upsample:(front_pad + block) * upsample]
return data
def offlineTTS(self, text):
get_tone_ids = False
merge_sentences = False
input_ids = self.frontend.get_input_ids(
text,
merge_sentences=merge_sentences,
get_tone_ids=get_tone_ids)
text, merge_sentences=merge_sentences, get_tone_ids=get_tone_ids)
phone_ids = input_ids["phone_ids"]
wav_list = []
for i in range(len(phone_ids)):
orig_hs = self.engine.executor.am_encoder_infer_sess.run(
None, input_feed={'text': phone_ids[i].numpy()}
)
None, input_feed={'text': phone_ids[i].numpy()})
hs = orig_hs[0]
am_decoder_output = self.engine.executor.am_decoder_sess.run(
None, input_feed={'xs': hs})
None, input_feed={'xs': hs})
am_postnet_output = self.engine.executor.am_postnet_sess.run(
None,
input_feed={
'xs': np.transpose(am_decoder_output[0], (0, 2, 1))
})
None,
input_feed={
'xs': np.transpose(am_decoder_output[0], (0, 2, 1))
})
am_output_data = am_decoder_output + np.transpose(
am_postnet_output[0], (0, 2, 1))
normalized_mel = am_output_data[0][0]
mel = denorm(normalized_mel, self.engine.executor.am_mu, self.engine.executor.am_std)
mel = denorm(normalized_mel, self.engine.executor.am_mu,
self.engine.executor.am_std)
wav = self.engine.executor.voc_sess.run(
output_names=None, input_feed={'logmel': mel})[0]
output_names=None, input_feed={'logmel': mel})[0]
wav_list.append(wav)
wavs = np.concatenate(wav_list)
return wavs
def streamTTS(self, text):
get_tone_ids = False
@ -88,9 +87,7 @@ class TTS:
# front
input_ids = self.frontend.get_input_ids(
text,
merge_sentences=merge_sentences,
get_tone_ids=get_tone_ids)
text, merge_sentences=merge_sentences, get_tone_ids=get_tone_ids)
phone_ids = input_ids["phone_ids"]
for i in range(len(phone_ids)):
@ -105,14 +102,15 @@ class TTS:
mel = mel[0]
# voc streaming
mel_chunks = get_chunks(mel, self.config.voc_block, self.config.voc_pad, "voc")
mel_chunks = get_chunks(mel, self.config.voc_block,
self.config.voc_pad, "voc")
voc_chunk_num = len(mel_chunks)
for i, mel_chunk in enumerate(mel_chunks):
sub_wav = self.executor.voc_sess.run(
output_names=None, input_feed={'logmel': mel_chunk})
sub_wav = self.depadding(sub_wav[0], voc_chunk_num, i,
self.config.voc_block, self.config.voc_pad,
self.config.voc_upsample)
sub_wav = self.depadding(
sub_wav[0], voc_chunk_num, i, self.config.voc_block,
self.config.voc_pad, self.config.voc_upsample)
yield self.after_process(sub_wav)
@ -130,7 +128,8 @@ class TTS:
end = min(self.config.voc_block + self.config.voc_pad, mel_len)
# streaming am
hss = get_chunks(orig_hs, self.config.am_block, self.config.am_pad, "am")
hss = get_chunks(orig_hs, self.config.am_block,
self.config.am_pad, "am")
am_chunk_num = len(hss)
for i, hs in enumerate(hss):
am_decoder_output = self.executor.am_decoder_sess.run(
@ -147,7 +146,8 @@ class TTS:
sub_mel = denorm(normalized_mel, self.executor.am_mu,
self.executor.am_std)
sub_mel = self.depadding(sub_mel, am_chunk_num, i,
self.config.am_block, self.config.am_pad, 1)
self.config.am_block,
self.config.am_pad, 1)
if i == 0:
mel_streaming = sub_mel
@ -165,23 +165,22 @@ class TTS:
output_names=None, input_feed={'logmel': voc_chunk})
sub_wav = self.depadding(
sub_wav[0], voc_chunk_num, voc_chunk_id,
self.config.voc_block, self.config.voc_pad, self.config.voc_upsample)
self.config.voc_block, self.config.voc_pad,
self.config.voc_upsample)
yield self.after_process(sub_wav)
voc_chunk_id += 1
start = max(
0, voc_chunk_id * self.config.voc_block - self.config.voc_pad)
end = min(
(voc_chunk_id + 1) * self.config.voc_block + self.config.voc_pad,
mel_len)
start = max(0, voc_chunk_id * self.config.voc_block -
self.config.voc_pad)
end = min((voc_chunk_id + 1) * self.config.voc_block +
self.config.voc_pad, mel_len)
else:
logging.error(
"Only support fastspeech2_csmsc or fastspeech2_cnndecoder_csmsc on streaming tts."
)
)
def streamTTSBytes(self, text):
for wav in self.engine.executor.infer(
text=text,
@ -191,19 +190,14 @@ class TTS:
wav = float2pcm(wav) # float32 to int16
wav_bytes = wav.tobytes() # to bytes
yield wav_bytes
def after_process(self, wav):
# for tvm
wav = float2pcm(wav) # float32 to int16
wav_bytes = wav.tobytes() # to bytes
wav_base64 = base64.b64encode(wav_bytes).decode('utf8') # to base64
return wav_base64
def streamTTS_TVM(self, text):
# 用 TVM 优化
pass

@ -1,11 +1,13 @@
# vpr Demo 没有使用 mysql 与 muilvs, 仅用于docker演示
import logging
import faiss
from matplotlib import use
import numpy as np
from .sql_helper import DataBase
from .vpr_encode import get_audio_embedding
class VPR:
def __init__(self, db_path, dim, top_k) -> None:
# 初始化
@ -14,15 +16,15 @@ class VPR:
self.top_k = top_k
self.dtype = np.float32
self.vpr_idx = 0
# db 初始化
self.db = DataBase(db_path)
# faiss 初始化
index_ip = faiss.IndexFlatIP(dim)
self.index_ip = faiss.IndexIDMap(index_ip)
self.init()
def init(self):
# demo 初始化,把 mysql中的向量注册到 faiss 中
sql_dbs = self.db.select_all()
@ -34,12 +36,13 @@ class VPR:
if len(vc.shape) == 1:
vc = np.expand_dims(vc, axis=0)
# 构建数据库
self.index_ip.add_with_ids(vc, np.array((idx,)).astype('int64'))
self.index_ip.add_with_ids(vc, np.array(
(idx, )).astype('int64'))
logging.info("faiss 构建完毕")
def faiss_enroll(self, idx, vc):
self.index_ip.add_with_ids(vc, np.array((idx,)).astype('int64'))
self.index_ip.add_with_ids(vc, np.array((idx, )).astype('int64'))
def vpr_enroll(self, username, wav_path):
# 注册声纹
emb = get_audio_embedding(wav_path)
@ -53,21 +56,22 @@ class VPR:
else:
last_idx, mess = None
return last_idx
def vpr_recog(self, wav_path):
# 识别声纹
emb_search = get_audio_embedding(wav_path)
if emb_search is not None:
emb_search = np.expand_dims(emb_search, axis=0)
D, I = self.index_ip.search(emb_search, self.top_k)
D = D.tolist()[0]
I = I.tolist()[0]
return [(round(D[i] * 100, 2 ), I[i]) for i in range(len(D)) if I[i] != -1]
I = I.tolist()[0]
return [(round(D[i] * 100, 2), I[i]) for i in range(len(D))
if I[i] != -1]
else:
logging.error("识别失败")
return None
def do_search_vpr(self, wav_path):
spk_ids, paths, scores = [], [], []
recog_result = self.vpr_recog(wav_path)
@ -78,41 +82,39 @@ class VPR:
scores.append(score)
paths.append("")
return spk_ids, paths, scores
def vpr_del(self, username):
# 根据用户username, 删除声纹
# 查用户ID删除对应向量
res = self.db.select_by_username(username)
for r in res:
idx = r['id']
self.index_ip.remove_ids(np.array((idx,)).astype('int64'))
self.index_ip.remove_ids(np.array((idx, )).astype('int64'))
self.db.drop_by_username(username)
def vpr_list(self):
# 获取数据列表
return self.db.select_all()
def do_list(self):
spk_ids, vpr_ids = [], []
for res in self.db.select_all():
spk_ids.append(res['username'])
vpr_ids.append(res['id'])
return spk_ids, vpr_ids
return spk_ids, vpr_ids
def do_get_wav(self, vpr_idx):
res = self.db.select_by_id(vpr_idx)
return res[0]['wavpath']
res = self.db.select_by_id(vpr_idx)
return res[0]['wavpath']
def vpr_data(self, idx):
# 获取对应ID的数据
res = self.db.select_by_id(idx)
return res
def vpr_droptable(self):
# 删除表
self.db.drop_table()
# 清空 faiss
self.index_ip.reset()

@ -1,9 +1,12 @@
from paddlespeech.cli.vector import VectorExecutor
import numpy as np
import logging
import numpy as np
from paddlespeech.cli.vector import VectorExecutor
vector_executor = VectorExecutor()
def get_audio_embedding(path):
"""
Use vpr_inference to generate embedding of audio
@ -16,5 +19,3 @@ def get_audio_embedding(path):
except Exception as e:
logging.error(f"Error with embedding:{e}")
return None

@ -2,6 +2,7 @@ from typing import List
from fastapi import WebSocket
class ConnectionManager:
def __init__(self):
# 存放激活的ws连接对象
@ -28,4 +29,4 @@ class ConnectionManager:
await connection.send_text(message)
manager = ConnectionManager()
manager = ConnectionManager()

@ -1,60 +1,64 @@
from paddlespeech.cli.asr.infer import ASRExecutor
import soundfile as sf
import os
import librosa
import soundfile as sf
from src.SpeechBase.asr import ASR
from src.SpeechBase.tts import TTS
from src.SpeechBase.nlp import NLP
from src.SpeechBase.tts import TTS
from paddlespeech.cli.asr.infer import ASRExecutor
class Robot:
def __init__(self, asr_config, tts_config,asr_init_path,
def __init__(self,
asr_config,
tts_config,
asr_init_path,
ie_model_path=None) -> None:
self.nlp = NLP(ie_model_path=ie_model_path)
self.asr = ASR(config_path=asr_config)
self.tts = TTS(config_path=tts_config)
self.tts_sample_rate = 24000
self.asr_sample_rate = 16000
# 流式识别效果不如端到端的模型,这里流式模型与端到端模型分开
self.asr_model = ASRExecutor()
self.asr_name = "conformer_wenetspeech"
self.warm_up_asrmodel(asr_init_path)
def warm_up_asrmodel(self, asr_init_path):
def warm_up_asrmodel(self, asr_init_path):
if not os.path.exists(asr_init_path):
path_dir = os.path.dirname(asr_init_path)
if not os.path.exists(path_dir):
os.makedirs(path_dir, exist_ok=True)
# TTS生成采样率24000
text = "生成初始音频"
self.text2speech(text, asr_init_path)
# asr model初始化
self.asr_model(asr_init_path, model=self.asr_name,lang='zh',
sample_rate=16000, force_yes=True)
self.asr_model(
asr_init_path,
model=self.asr_name,
lang='zh',
sample_rate=16000,
force_yes=True)
def speech2text(self, audio_file):
self.asr_model.preprocess(self.asr_name, audio_file)
self.asr_model.infer(self.asr_name)
res = self.asr_model.postprocess()
return res
def text2speech(self, text, outpath):
wav = self.tts.offlineTTS(text)
sf.write(
outpath, wav, samplerate=self.tts_sample_rate)
sf.write(outpath, wav, samplerate=self.tts_sample_rate)
res = wav
return res
def text2speechStream(self, text):
for sub_wav_base64 in self.tts.streamTTS(text=text):
yield sub_wav_base64
def text2speechStreamBytes(self, text):
for wav_bytes in self.tts.streamTTSBytes(text=text):
yield wav_bytes
@ -66,5 +70,3 @@ class Robot:
def ie(self, text):
result = self.nlp.ie(text)
return result

@ -1,18 +1,13 @@
import random
def randName(n=5):
return "".join(random.sample('zyxwvutsrqponmlkjihgfedcba',n))
return "".join(random.sample('zyxwvutsrqponmlkjihgfedcba', n))
def SuccessRequest(result=None, message="ok"):
return {
"code": 0,
"result":result,
"message": message
}
return {"code": 0, "result": result, "message": message}
def ErrorRequest(result=None, message="error"):
return {
"code": -1,
"result":result,
"message": message
}
return {"code": -1, "result": result, "message": message}

@ -1,3 +1,5 @@
([简体中文](./README_cn.md)|English)
# Story Talker
## Introduction
Storybooks are very important children's enlightenment books, but parents usually don't have enough time to read storybooks for their children. For very young children, they may not understand the Chinese characters in storybooks. Or sometimes, children just want to "listen" but don't want to "read".

@ -0,0 +1,20 @@
(简体中文|[English](./README.md))
# Story Talker
## 简介
故事书是非常重要的儿童启蒙书,但家长通常没有足够的时间为孩子读故事书。对于非常小的孩子,他们可能不理解故事书中的汉字。或有时,孩子们只是想“听”,而不想“读”。
您可以使用 `PaddleOCR` 获取故事书的文本,并通过 `PaddleSpeech``TTS` 模块进行阅读。
## 使用
运行以下命令行开始:
```
./run.sh
```
结果已显示在 [notebook](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/tutorial/tts/tts_tutorial.ipynb)。

@ -28,6 +28,7 @@ asr_online:
sample_rate: 16000
cfg_path:
decode_method:
num_decoding_left_chunks: -1
force_yes: True
device: 'cpu' # cpu or gpu:id
decode_method: "attention_rescoring"

@ -34,7 +34,7 @@ if __name__ == '__main__':
n = 0
for m in rtfs:
# not accurate, may have duplicate log
n += 1
n += 1
T += m['T']
P += m['P']

@ -1,3 +1,5 @@
([简体中文](./README_cn.md)|English)
# Style FastSpeech2
## Introduction
[FastSpeech2](https://arxiv.org/abs/2006.04558) is a classical acoustic model for Text-to-Speech synthesis, which introduces controllable speech input, including `phoneme duration``energy` and `pitch`.

@ -0,0 +1,33 @@
(简体中文|[English](./README.md))
# Style FastSpeech2
## 简介
[FastSpeech2](https://arxiv.org/abs/2006.04558) 是用于语音合成的经典声学模型,它引入了可控语音输入,包括 `phoneme duration``energy``pitch`
在预测阶段,您可以更改这些变量以获得一些有趣的结果。
例如:
1. `FastSpeech2` 中的 `duration` 可以控制音频的速度 ,并保持 `pitch` 。(在某些语音工具中,增加速度将增加音调,反之亦然。)
2. 当我们将一个句子的 `pitch` 设置为平均值并将音素的 `tones` 设置为 `1` 时,我们将获得 `robot-style` 的音色。
3. 当我们提高成年女性的 `pitch` (比例固定)时,我们会得到 `child-style` 的音色。
句子中不同音素的 `duration``pitch` 可以具有不同的比例。您可以设置不同的音阶比例来强调或削弱某些音素的发音。
## 运行
运行以下命令行开始:
```
./run.sh
```
`run.sh`, 会首先执行 `source path.sh` 去设置好环境变量。
如果您想尝试您的句子,请替换 `sentences.txt`中的句子。
更多的细节,请查看 `style_syn.py`
语音样例可以在 [style-control-in-fastspeech2](https://paddlespeech.readthedocs.io/en/latest/tts/demo.html#style-control-in-fastspeech2) 查看。

@ -1,12 +1,7 @@
myst-parser
numpydoc
recommonmark>=0.5.0
sphinx
sphinx-autobuild
sphinx-markdown-tables
sphinx_rtd_theme
paddlepaddle>=2.2.2
braceexpand
colorlog
editdistance
fastapi
g2p_en
g2pM
h5py
@ -14,40 +9,45 @@ inflect
jieba
jsonlines
kaldiio
keyboard
librosa==0.8.1
loguru
matplotlib
myst-parser
nara_wpe
numpydoc
onnxruntime==1.10.0
opencc
pandas
paddlenlp
paddlepaddle>=2.2.2
paddlespeech_feat
pandas
pathos == 0.2.8
pattern_singleton
Pillow>=9.0.0
praatio==5.0.0
prettytable
pypinyin
pypinyin-dict
python-dateutil
pyworld==0.2.12
recommonmark>=0.5.0
resampy==0.2.2
sacrebleu
scipy
sentencepiece~=0.1.96
soundfile~=0.10
sphinx
sphinx-autobuild
sphinx-markdown-tables
sphinx_rtd_theme
textgrid
timer
tqdm
typeguard
uvicorn
visualdl
webrtcvad
websockets
yacs~=0.1.8
prettytable
zhon
colorlog
pathos == 0.2.8
fastapi
websockets
keyboard
uvicorn
pattern_singleton
braceexpand

@ -20,10 +20,11 @@
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
import os
import sys
import recommonmark.parser
import sphinx_rtd_theme
import sys
import os
sys.path.insert(0, os.path.abspath('../..'))
autodoc_mock_imports = ["soundfile", "librosa"]

@ -3,7 +3,7 @@
set -e
source path.sh
gpus=0,1
gpus=0,1,2,3,4,5,6,7
stage=0
stop_stage=100

@ -44,8 +44,8 @@ fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# install paddle2onnx
version=$(echo `pip list |grep "paddle2onnx"` |awk -F" " '{print $2}')
if [[ -z "$version" || ${version} != '0.9.8' ]]; then
pip install paddle2onnx==0.9.8
if [[ -z "$version" || ${version} != '1.0.0' ]]; then
pip install paddle2onnx==1.0.0
fi
./local/paddle2onnx.sh ${train_output_path} inference inference_onnx fastspeech2_aishell3
# considering the balance between speed and quality, we recommend that you use hifigan as vocoder

@ -0,0 +1,154 @@
# VITS with AISHELL-3
This example contains code used to train a [VITS](https://arxiv.org/abs/2106.06103) model with [AISHELL-3](http://www.aishelltech.com/aishell_3). The trained model can be used in Voice Cloning Task, We refer to the model structure of [Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis](https://arxiv.org/pdf/1806.04558.pdf). The general steps are as follows:
1. Speaker Encoder: We use Speaker Verification to train a speaker encoder. Datasets used in this task are different from those used in `VITS` because the transcriptions are not needed, we use more datasets, refer to [ge2e](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/ge2e).
2. Synthesizer and Vocoder: We use the trained speaker encoder to generate speaker embedding for each sentence in AISHELL-3. This embedding is an extra input of `VITS` which will be concated with encoder outputs. The vocoder is part of `VITS` due to its special structure.
## Dataset
### Download and Extract
Download AISHELL-3 from it's [Official Website](http://www.aishelltech.com/aishell_3) and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/data_aishell3`.
### Get MFA Result and Extract
We use [MFA2.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get phonemes for VITS, the durations of MFA are not needed here.
You can download from here [aishell3_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/aishell3_alignment_tone.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) (use MFA1.x now) of our repo.
## Pretrained GE2E Model
We use pretrained GE2E model to generate speaker embedding for each sentence.
Download pretrained GE2E model from here [ge2e_ckpt_0.3.zip](https://bj.bcebos.com/paddlespeech/Parakeet/released_models/ge2e/ge2e_ckpt_0.3.zip), and `unzip` it.
## Get Started
Assume the path to the dataset is `~/datasets/data_aishell3`.
Assume the path to the MFA result of AISHELL-3 is `./aishell3_alignment_tone`.
Assume the path to the pretrained ge2e model is `./ge2e_ckpt_0.3`.
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize waveform from `metadata.jsonl`.
5. start a voice cloning inference.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/preprocess.sh ${conf_path} ${ge2e_ckpt_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│   ├── norm
│   └── raw
├── embed
│ ├── SSB0005
│ ├── SSB0009
│ ├── ...
│ └── ...
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│   ├── norm
│   └── raw
└── train
├── feats_stats.npy
├── norm
└── raw
```
The `embed` contains the generated speaker embedding for each sentence in AISHELL-3, which has the same file structure with wav files and the format is `.npy`.
The computing time of utterance embedding can be x hours.
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains wave and linear spectrogram of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/feats_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, feats, feats_lengths, the path of linear spectrogram features, the path of raw waves, speaker, and the id of each utterance.
The preprocessing step is very similar to that one of [vits](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vits), but there is one more `ge2e/inference` step here.
### Model Training
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
```
The training step is very similar to that one of [vits](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vits), but we should set `--voice-cloning=True` when calling `${BIN_DIR}/train.py`.
### Synthesizing
`./local/synthesize.sh` calls `${BIN_DIR}/synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
```text
usage: synthesize.py [-h] [--config CONFIG] [--ckpt CKPT]
[--phones_dict PHONES_DICT] [--speaker_dict SPEAKER_DICT]
[--voice-cloning VOICE_CLONING] [--ngpu NGPU]
[--test_metadata TEST_METADATA] [--output_dir OUTPUT_DIR]
Synthesize with VITS
optional arguments:
-h, --help show this help message and exit
--config CONFIG Config of VITS.
--ckpt CKPT Checkpoint file of VITS.
--phones_dict PHONES_DICT
phone vocabulary file.
--speaker_dict SPEAKER_DICT
speaker id map file.
--voice-cloning VOICE_CLONING
whether training voice cloning model.
--ngpu NGPU if ngpu == 0, use cpu.
--test_metadata TEST_METADATA
test metadata.
--output_dir OUTPUT_DIR
output dir.
```
The synthesizing step is very similar to that one of [vits](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vits), but we should set `--voice-cloning=True` when calling `${BIN_DIR}/../synthesize.py`.
### Voice Cloning
Assume there are some reference audios in `./ref_audio`
```text
ref_audio
├── 001238.wav
├── LJ015-0254.wav
└── audio_self_test.mp3
```
`./local/voice_cloning.sh` calls `${BIN_DIR}/voice_cloning.py`
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/voice_cloning.sh ${conf_path} ${train_output_path} ${ckpt_name} ${ge2e_params_path} ${add_blank} ${ref_audio_dir}
```
If you want to convert a speaker audio file to refered speaker, run:
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/voice_cloning.sh ${conf_path} ${train_output_path} ${ckpt_name} ${ge2e_params_path} ${add_blank} ${ref_audio_dir} ${src_audio_path}
```
<!-- TODO display these after we trained the model -->
<!--
## Pretrained Model
The pretrained model can be downloaded here:
- [vits_vc_aishell3_ckpt_1.1.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/vits/vits_vc_aishell3_ckpt_1.1.0.zip) (add_blank=true)
VITS checkpoint contains files listed below.
(There is no need for `speaker_id_map.txt` here )
```text
vits_vc_aishell3_ckpt_1.1.0
├── default.yaml # default config used to train vitx
├── phone_id_map.txt # phone vocabulary file when training vits
└── snapshot_iter_333000.pdz # model parameters and optimizer states
```
ps: This ckpt is not good enough, a better result is training
-->

@ -0,0 +1,185 @@
# This configuration tested on 4 GPUs (V100) with 32GB GPU
# memory. It takes around 2 weeks to finish the training
# but 100k iters model should generate reasonable results.
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 22050 # sr
n_fft: 1024 # FFT size (samples).
n_shift: 256 # Hop size (samples). 12.5ms
win_length: null # Window length (samples). 50ms
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
##########################################################
# TTS MODEL SETTING #
##########################################################
model:
# generator related
generator_type: vits_generator
generator_params:
hidden_channels: 192
spk_embed_dim: 256
global_channels: 256
segment_size: 32
text_encoder_attention_heads: 2
text_encoder_ffn_expand: 4
text_encoder_blocks: 6
text_encoder_positionwise_layer_type: "conv1d"
text_encoder_positionwise_conv_kernel_size: 3
text_encoder_positional_encoding_layer_type: "rel_pos"
text_encoder_self_attention_layer_type: "rel_selfattn"
text_encoder_activation_type: "swish"
text_encoder_normalize_before: True
text_encoder_dropout_rate: 0.1
text_encoder_positional_dropout_rate: 0.0
text_encoder_attention_dropout_rate: 0.1
use_macaron_style_in_text_encoder: True
use_conformer_conv_in_text_encoder: False
text_encoder_conformer_kernel_size: -1
decoder_kernel_size: 7
decoder_channels: 512
decoder_upsample_scales: [8, 8, 2, 2]
decoder_upsample_kernel_sizes: [16, 16, 4, 4]
decoder_resblock_kernel_sizes: [3, 7, 11]
decoder_resblock_dilations: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
use_weight_norm_in_decoder: True
posterior_encoder_kernel_size: 5
posterior_encoder_layers: 16
posterior_encoder_stacks: 1
posterior_encoder_base_dilation: 1
posterior_encoder_dropout_rate: 0.0
use_weight_norm_in_posterior_encoder: True
flow_flows: 4
flow_kernel_size: 5
flow_base_dilation: 1
flow_layers: 4
flow_dropout_rate: 0.0
use_weight_norm_in_flow: True
use_only_mean_in_flow: True
stochastic_duration_predictor_kernel_size: 3
stochastic_duration_predictor_dropout_rate: 0.5
stochastic_duration_predictor_flows: 4
stochastic_duration_predictor_dds_conv_layers: 3
# discriminator related
discriminator_type: hifigan_multi_scale_multi_period_discriminator
discriminator_params:
scales: 1
scale_downsample_pooling: "AvgPool1D"
scale_downsample_pooling_params:
kernel_size: 4
stride: 2
padding: 2
scale_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes: [15, 41, 5, 3]
channels: 128
max_downsample_channels: 1024
max_groups: 16
bias: True
downsample_scales: [2, 2, 4, 4, 1]
nonlinear_activation: "leakyrelu"
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: True
use_spectral_norm: False
follow_official_norm: False
periods: [2, 3, 5, 7, 11]
period_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes: [5, 3]
channels: 32
downsample_scales: [3, 3, 3, 3, 1]
max_downsample_channels: 1024
bias: True
nonlinear_activation: "leakyrelu"
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: True
use_spectral_norm: False
# others
sampling_rate: 22050 # needed in the inference for saving wav
cache_generator_outputs: True # whether to cache generator outputs in the training
###########################################################
# LOSS SETTING #
###########################################################
# loss function related
generator_adv_loss_params:
average_by_discriminators: False # whether to average loss value by #discriminators
loss_type: mse # loss type, "mse" or "hinge"
discriminator_adv_loss_params:
average_by_discriminators: False # whether to average loss value by #discriminators
loss_type: mse # loss type, "mse" or "hinge"
feat_match_loss_params:
average_by_discriminators: False # whether to average loss value by #discriminators
average_by_layers: False # whether to average loss value by #layers of each discriminator
include_final_outputs: True # whether to include final outputs for loss calculation
mel_loss_params:
fs: 22050 # must be the same as the training data
fft_size: 1024 # fft points
hop_size: 256 # hop size
win_length: null # window length
window: hann # window type
num_mels: 80 # number of Mel basis
fmin: 0 # minimum frequency for Mel basis
fmax: null # maximum frequency for Mel basis
log_base: null # null represent natural log
###########################################################
# ADVERSARIAL LOSS SETTING #
###########################################################
lambda_adv: 1.0 # loss scaling coefficient for adversarial loss
lambda_mel: 45.0 # loss scaling coefficient for Mel loss
lambda_feat_match: 2.0 # loss scaling coefficient for feat match loss
lambda_dur: 1.0 # loss scaling coefficient for duration loss
lambda_kl: 1.0 # loss scaling coefficient for KL divergence loss
# others
sampling_rate: 22050 # needed in the inference for saving wav
cache_generator_outputs: True # whether to cache generator outputs in the training
###########################################################
# DATA LOADER SETTING #
###########################################################
batch_size: 50 # Batch size.
num_workers: 4 # Number of workers in DataLoader.
##########################################################
# OPTIMIZER & SCHEDULER SETTING #
##########################################################
# optimizer setting for generator
generator_optimizer_params:
beta1: 0.8
beta2: 0.99
epsilon: 1.0e-9
weight_decay: 0.0
generator_scheduler: exponential_decay
generator_scheduler_params:
learning_rate: 2.0e-4
gamma: 0.999875
# optimizer setting for discriminator
discriminator_optimizer_params:
beta1: 0.8
beta2: 0.99
epsilon: 1.0e-9
weight_decay: 0.0
discriminator_scheduler: exponential_decay
discriminator_scheduler_params:
learning_rate: 2.0e-4
gamma: 0.999875
generator_first: False # whether to start updating generator first
##########################################################
# OTHER TRAINING SETTING #
##########################################################
num_snapshots: 10 # max number of snapshots to keep while training
train_max_steps: 350000 # Number of training steps. == total_iters / ngpus, total_iters = 1000000
save_interval_steps: 1000 # Interval steps to save checkpoint.
eval_interval_steps: 250 # Interval steps to evaluate the network.
seed: 777 # random seed number

@ -0,0 +1,79 @@
#!/bin/bash
stage=0
stop_stage=100
config_path=$1
add_blank=$2
ge2e_ckpt_path=$3
# gen speaker embedding
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
python3 ${MAIN_ROOT}/paddlespeech/vector/exps/ge2e/inference.py \
--input=~/datasets/data_aishell3/train/wav/ \
--output=dump/embed \
--checkpoint_path=${ge2e_ckpt_path}
fi
# copy from tts3/preprocess
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# get durations from MFA's result
echo "Generate durations.txt from MFA results ..."
python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
--inputdir=./aishell3_alignment_tone \
--output durations.txt \
--config=${config_path}
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# extract features
echo "Extract features ..."
python3 ${BIN_DIR}/preprocess.py \
--dataset=aishell3 \
--rootdir=~/datasets/data_aishell3/ \
--dumpdir=dump \
--dur-file=durations.txt \
--config=${config_path} \
--num-cpu=20 \
--cut-sil=True \
--spk_emb_dir=dump/embed
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# get features' stats(mean and std)
echo "Get features' stats ..."
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="feats"
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# normalize and covert phone/speaker to id, dev and test should use train's stats
echo "Normalize ..."
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/train/raw/metadata.jsonl \
--dumpdir=dump/train/norm \
--feats-stats=dump/train/feats_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt \
--add-blank=${add_blank} \
--skip-wav-copy
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/dev/raw/metadata.jsonl \
--dumpdir=dump/dev/norm \
--feats-stats=dump/train/feats_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt \
--add-blank=${add_blank} \
--skip-wav-copy
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/test/raw/metadata.jsonl \
--dumpdir=dump/test/norm \
--feats-stats=dump/train/feats_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt \
--add-blank=${add_blank} \
--skip-wav-copy
fi

@ -0,0 +1,19 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize.py \
--config=${config_path} \
--ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--phones_dict=dump/phone_id_map.txt \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--voice-cloning=True
fi

@ -0,0 +1,18 @@
#!/bin/bash
config_path=$1
train_output_path=$2
# install monotonic_align
cd ${MAIN_ROOT}/paddlespeech/t2s/models/vits/monotonic_align
python3 setup.py build_ext --inplace
cd -
python3 ${BIN_DIR}/train.py \
--train-metadata=dump/train/norm/metadata.jsonl \
--dev-metadata=dump/dev/norm/metadata.jsonl \
--config=${config_path} \
--output-dir=${train_output_path} \
--ngpu=4 \
--phones-dict=dump/phone_id_map.txt \
--voice-cloning=True

@ -0,0 +1,22 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
ge2e_params_path=$4
add_blank=$5
ref_audio_dir=$6
src_audio_path=$7
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/voice_cloning.py \
--config=${config_path} \
--ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--ge2e_params_path=${ge2e_params_path} \
--phones_dict=dump/phone_id_map.txt \
--text="凯莫瑞安联合体的经济崩溃迫在眉睫。" \
--audio-path=${src_audio_path} \
--input-dir=${ref_audio_dir} \
--output-dir=${train_output_path}/vc_syn \
--add-blank=${add_blank}

@ -0,0 +1,13 @@
#!/bin/bash
export MAIN_ROOT=`realpath ${PWD}/../../../`
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
export LC_ALL=C
export PYTHONDONTWRITEBYTECODE=1
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
MODEL=vits
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}

@ -0,0 +1,45 @@
#!/bin/bash
set -e
source path.sh
gpus=0,1,2,3
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_153.pdz
add_blank=true
ref_audio_dir=ref_audio
src_audio_path=''
# not include ".pdparams" here
ge2e_ckpt_path=./ge2e_ckpt_0.3/step-3000000
# include ".pdparams" here
ge2e_params_path=${ge2e_ckpt_path}.pdparams
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
CUDA_VISIBLE_DEVICES=${gpus} ./local/preprocess.sh ${conf_path} ${add_blank} ${ge2e_ckpt_path} || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
CUDA_VISIBLE_DEVICES=${gpus} ./local/voice_cloning.sh ${conf_path} ${train_output_path} ${ckpt_name} \
${ge2e_params_path} ${add_blank} ${ref_audio_dir} ${src_audio_path} || exit -1
fi

@ -0,0 +1,202 @@
# VITS with AISHELL-3
This example contains code used to train a [VITS](https://arxiv.org/abs/2106.06103) model with [AISHELL-3](http://www.aishelltech.com/aishell_3).
AISHELL-3 is a large-scale and high-fidelity multi-speaker Mandarin speech corpus that could be used to train multi-speaker Text-to-Speech (TTS) systems.
We use AISHELL-3 to train a multi-speaker VITS model here.
## Dataset
### Download and Extract
Download AISHELL-3 from it's [Official Website](http://www.aishelltech.com/aishell_3) and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/data_aishell3`.
### Get MFA Result and Extract
We use [MFA2.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get phonemes for VITS, the durations of MFA are not needed here.
You can download from here [aishell3_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/aishell3_alignment_tone.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) (use MFA1.x now) of our repo.
## Get Started
Assume the path to the dataset is `~/datasets/data_aishell3`.
Assume the path to the MFA result of AISHELL-3 is `./aishell3_alignment_tone`.
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
- synthesize waveform from a text file.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│   ├── norm
│   └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│   ├── norm
│   └── raw
└── train
├── feats_stats.npy
├── norm
└── raw
```
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains wave and linear spectrogram of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/feats_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, feats, feats_lengths, the path of linear spectrogram features, the path of raw waves, speaker, and the id of each utterance.
### Model Training
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
```
`./local/train.sh` calls `${BIN_DIR}/train.py`.
Here's the complete help message.
```text
usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
[--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
[--ngpu NGPU] [--phones-dict PHONES_DICT]
[--speaker-dict SPEAKER_DICT] [--voice-cloning VOICE_CLONING]
Train a VITS model.
optional arguments:
-h, --help show this help message and exit
--config CONFIG config file to overwrite default config.
--train-metadata TRAIN_METADATA
training data.
--dev-metadata DEV_METADATA
dev data.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
--phones-dict PHONES_DICT
phone vocabulary file.
--speaker-dict SPEAKER_DICT
speaker id map file for multiple speaker model.
--voice-cloning VOICE_CLONING
whether training voice cloning model.
```
1. `--config` is a config file in yaml format to overwrite the default config, which can be found at `conf/default.yaml`.
2. `--train-metadata` and `--dev-metadata` should be the metadata file in the normalized subfolder of `train` and `dev` in the `dump` folder.
3. `--output-dir` is the directory to save the results of the experiment. Checkpoints are saved in `checkpoints/` inside this directory.
4. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
5. `--phones-dict` is the path of the phone vocabulary file.
6. `--speaker-dict` is the path of the speaker id map file when training a multi-speaker VITS.
### Synthesizing
`./local/synthesize.sh` calls `${BIN_DIR}/synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
```text
usage: synthesize.py [-h] [--config CONFIG] [--ckpt CKPT]
[--phones_dict PHONES_DICT] [--speaker_dict SPEAKER_DICT]
[--voice-cloning VOICE_CLONING] [--ngpu NGPU]
[--test_metadata TEST_METADATA] [--output_dir OUTPUT_DIR]
Synthesize with VITS
optional arguments:
-h, --help show this help message and exit
--config CONFIG Config of VITS.
--ckpt CKPT Checkpoint file of VITS.
--phones_dict PHONES_DICT
phone vocabulary file.
--speaker_dict SPEAKER_DICT
speaker id map file.
--voice-cloning VOICE_CLONING
whether training voice cloning model.
--ngpu NGPU if ngpu == 0, use cpu.
--test_metadata TEST_METADATA
test metadata.
--output_dir OUTPUT_DIR
output dir.
```
`./local/synthesize_e2e.sh` calls `${BIN_DIR}/synthesize_e2e.py`, which can synthesize waveform from text file.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
```text
usage: synthesize_e2e.py [-h] [--config CONFIG] [--ckpt CKPT]
[--phones_dict PHONES_DICT]
[--speaker_dict SPEAKER_DICT] [--spk_id SPK_ID]
[--lang LANG]
[--inference_dir INFERENCE_DIR] [--ngpu NGPU]
[--text TEXT] [--output_dir OUTPUT_DIR]
Synthesize with VITS
optional arguments:
-h, --help show this help message and exit
--config CONFIG Config of VITS.
--ckpt CKPT Checkpoint file of VITS.
--phones_dict PHONES_DICT
phone vocabulary file.
--speaker_dict SPEAKER_DICT
speaker id map file.
--spk_id SPK_ID spk id for multi speaker acoustic model
--lang LANG Choose model language. zh or en
--inference_dir INFERENCE_DIR
dir to save inference models
--ngpu NGPU if ngpu == 0, use cpu.
--text TEXT text to synthesize, a 'utt_id sentence' pair per line.
--output_dir OUTPUT_DIR
output dir.
```
1. `--config`, `--ckpt`, `--phones_dict` and `--speaker_dict` are arguments for acoustic model, which correspond to the 3 files in the VITS pretrained model.
2. `--lang` is the model language, which can be `zh` or `en`.
3. `--test_metadata` should be the metadata file in the normalized subfolder of `test` in the `dump` folder.
4. `--text` is the text file, which contains sentences to synthesize.
5. `--output_dir` is the directory to save synthesized audio files.
6. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
<!-- TODO display these after we trained the model -->
<!--
## Pretrained Model
The pretrained model can be downloaded here:
- [vits_aishell3_ckpt_1.1.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/vits/vits_aishell3_ckpt_1.1.0.zip) (add_blank=true)
VITS checkpoint contains files listed below.
```text
vits_aishell3_ckpt_1.1.0
├── default.yaml # default config used to train vitx
├── phone_id_map.txt # phone vocabulary file when training vits
├── speaker_id_map.txt # speaker id map file when training a multi-speaker vits
└── snapshot_iter_333000.pdz # model parameters and optimizer states
```
ps: This ckpt is not good enough, a better result is training
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences.txt` using pretrained VITS.
```bash
source path.sh
add_blank=true
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e.py \
--config=vits_aishell3_ckpt_1.1.0/default.yaml \
--ckpt=vits_aishell3_ckpt_1.1.0/snapshot_iter_333000.pdz \
--phones_dict=vits_aishell3_ckpt_1.1.0/phone_id_map.txt \
--speaker_dict=vits_aishell3_ckpt_1.1.0/speaker_id_map.txt \
--output_dir=exp/default/test_e2e \
--text=${BIN_DIR}/../sentences.txt \
--add-blank=${add_blank}
```
-->

@ -0,0 +1,184 @@
# This configuration tested on 4 GPUs (V100) with 32GB GPU
# memory. It takes around 2 weeks to finish the training
# but 100k iters model should generate reasonable results.
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 22050 # sr
n_fft: 1024 # FFT size (samples).
n_shift: 256 # Hop size (samples). 12.5ms
win_length: null # Window length (samples). 50ms
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
##########################################################
# TTS MODEL SETTING #
##########################################################
model:
# generator related
generator_type: vits_generator
generator_params:
hidden_channels: 192
global_channels: 256
segment_size: 32
text_encoder_attention_heads: 2
text_encoder_ffn_expand: 4
text_encoder_blocks: 6
text_encoder_positionwise_layer_type: "conv1d"
text_encoder_positionwise_conv_kernel_size: 3
text_encoder_positional_encoding_layer_type: "rel_pos"
text_encoder_self_attention_layer_type: "rel_selfattn"
text_encoder_activation_type: "swish"
text_encoder_normalize_before: True
text_encoder_dropout_rate: 0.1
text_encoder_positional_dropout_rate: 0.0
text_encoder_attention_dropout_rate: 0.1
use_macaron_style_in_text_encoder: True
use_conformer_conv_in_text_encoder: False
text_encoder_conformer_kernel_size: -1
decoder_kernel_size: 7
decoder_channels: 512
decoder_upsample_scales: [8, 8, 2, 2]
decoder_upsample_kernel_sizes: [16, 16, 4, 4]
decoder_resblock_kernel_sizes: [3, 7, 11]
decoder_resblock_dilations: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
use_weight_norm_in_decoder: True
posterior_encoder_kernel_size: 5
posterior_encoder_layers: 16
posterior_encoder_stacks: 1
posterior_encoder_base_dilation: 1
posterior_encoder_dropout_rate: 0.0
use_weight_norm_in_posterior_encoder: True
flow_flows: 4
flow_kernel_size: 5
flow_base_dilation: 1
flow_layers: 4
flow_dropout_rate: 0.0
use_weight_norm_in_flow: True
use_only_mean_in_flow: True
stochastic_duration_predictor_kernel_size: 3
stochastic_duration_predictor_dropout_rate: 0.5
stochastic_duration_predictor_flows: 4
stochastic_duration_predictor_dds_conv_layers: 3
# discriminator related
discriminator_type: hifigan_multi_scale_multi_period_discriminator
discriminator_params:
scales: 1
scale_downsample_pooling: "AvgPool1D"
scale_downsample_pooling_params:
kernel_size: 4
stride: 2
padding: 2
scale_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes: [15, 41, 5, 3]
channels: 128
max_downsample_channels: 1024
max_groups: 16
bias: True
downsample_scales: [2, 2, 4, 4, 1]
nonlinear_activation: "leakyrelu"
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: True
use_spectral_norm: False
follow_official_norm: False
periods: [2, 3, 5, 7, 11]
period_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes: [5, 3]
channels: 32
downsample_scales: [3, 3, 3, 3, 1]
max_downsample_channels: 1024
bias: True
nonlinear_activation: "leakyrelu"
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: True
use_spectral_norm: False
# others
sampling_rate: 22050 # needed in the inference for saving wav
cache_generator_outputs: True # whether to cache generator outputs in the training
###########################################################
# LOSS SETTING #
###########################################################
# loss function related
generator_adv_loss_params:
average_by_discriminators: False # whether to average loss value by #discriminators
loss_type: mse # loss type, "mse" or "hinge"
discriminator_adv_loss_params:
average_by_discriminators: False # whether to average loss value by #discriminators
loss_type: mse # loss type, "mse" or "hinge"
feat_match_loss_params:
average_by_discriminators: False # whether to average loss value by #discriminators
average_by_layers: False # whether to average loss value by #layers of each discriminator
include_final_outputs: True # whether to include final outputs for loss calculation
mel_loss_params:
fs: 22050 # must be the same as the training data
fft_size: 1024 # fft points
hop_size: 256 # hop size
win_length: null # window length
window: hann # window type
num_mels: 80 # number of Mel basis
fmin: 0 # minimum frequency for Mel basis
fmax: null # maximum frequency for Mel basis
log_base: null # null represent natural log
###########################################################
# ADVERSARIAL LOSS SETTING #
###########################################################
lambda_adv: 1.0 # loss scaling coefficient for adversarial loss
lambda_mel: 45.0 # loss scaling coefficient for Mel loss
lambda_feat_match: 2.0 # loss scaling coefficient for feat match loss
lambda_dur: 1.0 # loss scaling coefficient for duration loss
lambda_kl: 1.0 # loss scaling coefficient for KL divergence loss
# others
sampling_rate: 22050 # needed in the inference for saving wav
cache_generator_outputs: True # whether to cache generator outputs in the training
###########################################################
# DATA LOADER SETTING #
###########################################################
batch_size: 50 # Batch size.
num_workers: 4 # Number of workers in DataLoader.
##########################################################
# OPTIMIZER & SCHEDULER SETTING #
##########################################################
# optimizer setting for generator
generator_optimizer_params:
beta1: 0.8
beta2: 0.99
epsilon: 1.0e-9
weight_decay: 0.0
generator_scheduler: exponential_decay
generator_scheduler_params:
learning_rate: 2.0e-4
gamma: 0.999875
# optimizer setting for discriminator
discriminator_optimizer_params:
beta1: 0.8
beta2: 0.99
epsilon: 1.0e-9
weight_decay: 0.0
discriminator_scheduler: exponential_decay
discriminator_scheduler_params:
learning_rate: 2.0e-4
gamma: 0.999875
generator_first: False # whether to start updating generator first
##########################################################
# OTHER TRAINING SETTING #
##########################################################
num_snapshots: 10 # max number of snapshots to keep while training
train_max_steps: 350000 # Number of training steps. == total_iters / ngpus, total_iters = 1000000
save_interval_steps: 1000 # Interval steps to save checkpoint.
eval_interval_steps: 250 # Interval steps to evaluate the network.
seed: 777 # random seed number

@ -0,0 +1,69 @@
#!/bin/bash
stage=0
stop_stage=100
config_path=$1
add_blank=$2
# copy from tts3/preprocess
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# get durations from MFA's result
echo "Generate durations.txt from MFA results ..."
python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
--inputdir=./aishell3_alignment_tone \
--output durations.txt \
--config=${config_path}
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# extract features
echo "Extract features ..."
python3 ${BIN_DIR}/preprocess.py \
--dataset=aishell3 \
--rootdir=~/datasets/data_aishell3/ \
--dumpdir=dump \
--dur-file=durations.txt \
--config=${config_path} \
--num-cpu=20 \
--cut-sil=True
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# get features' stats(mean and std)
echo "Get features' stats ..."
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="feats"
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# normalize and covert phone/speaker to id, dev and test should use train's stats
echo "Normalize ..."
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/train/raw/metadata.jsonl \
--dumpdir=dump/train/norm \
--feats-stats=dump/train/feats_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt \
--add-blank=${add_blank} \
--skip-wav-copy
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/dev/raw/metadata.jsonl \
--dumpdir=dump/dev/norm \
--feats-stats=dump/train/feats_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt \
--add-blank=${add_blank} \
--skip-wav-copy
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/test/raw/metadata.jsonl \
--dumpdir=dump/test/norm \
--feats-stats=dump/train/feats_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt \
--add-blank=${add_blank} \
--skip-wav-copy
fi

@ -0,0 +1,19 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize.py \
--config=${config_path} \
--ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--phones_dict=dump/phone_id_map.txt \
--speaker_dict=dump/speaker_id_map.txt \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test
fi

@ -0,0 +1,24 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
add_blank=$4
stage=0
stop_stage=0
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e.py \
--config=${config_path} \
--ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--phones_dict=dump/phone_id_map.txt \
--speaker_dict=dump/speaker_id_map.txt \
--spk_id=0 \
--output_dir=${train_output_path}/test_e2e \
--text=${BIN_DIR}/../sentences.txt \
--add-blank=${add_blank}
fi

@ -0,0 +1,18 @@
#!/bin/bash
config_path=$1
train_output_path=$2
# install monotonic_align
cd ${MAIN_ROOT}/paddlespeech/t2s/models/vits/monotonic_align
python3 setup.py build_ext --inplace
cd -
python3 ${BIN_DIR}/train.py \
--train-metadata=dump/train/norm/metadata.jsonl \
--dev-metadata=dump/dev/norm/metadata.jsonl \
--config=${config_path} \
--output-dir=${train_output_path} \
--ngpu=4 \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt

@ -0,0 +1,13 @@
#!/bin/bash
export MAIN_ROOT=`realpath ${PWD}/../../../`
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
export LC_ALL=C
export PYTHONDONTWRITEBYTECODE=1
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
MODEL=vits
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}

@ -0,0 +1,36 @@
#!/bin/bash
set -e
source path.sh
gpus=0,1,2,3
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_153.pdz
add_blank=true
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
./local/preprocess.sh ${conf_path} ${add_blank}|| exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} ${add_blank}|| exit -1
fi

@ -3,7 +3,7 @@
set -e
source path.sh
gpus=0,1
gpus=0,1,2,3,4,5,6,7
stage=0
stop_stage=100

@ -46,8 +46,8 @@ fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# install paddle2onnx
version=$(echo `pip list |grep "paddle2onnx"` |awk -F" " '{print $2}')
if [[ -z "$version" || ${version} != '0.9.8' ]]; then
pip install paddle2onnx==0.9.8
if [[ -z "$version" || ${version} != '1.0.0' ]]; then
pip install paddle2onnx==1.0.0
fi
./local/paddle2onnx.sh ${train_output_path} inference inference_onnx speedyspeech_csmsc
# considering the balance between speed and quality, we recommend that you use hifigan as vocoder

@ -46,8 +46,8 @@ fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# install paddle2onnx
version=$(echo `pip list |grep "paddle2onnx"` |awk -F" " '{print $2}')
if [[ -z "$version" || ${version} != '0.9.8' ]]; then
pip install paddle2onnx==0.9.8
if [[ -z "$version" || ${version} != '1.0.0' ]]; then
pip install paddle2onnx==1.0.0
fi
./local/paddle2onnx.sh ${train_output_path} inference inference_onnx fastspeech2_csmsc
# considering the balance between speed and quality, we recommend that you use hifigan as vocoder

@ -59,8 +59,8 @@ fi
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
# install paddle2onnx
version=$(echo `pip list |grep "paddle2onnx"` |awk -F" " '{print $2}')
if [[ -z "$version" || ${version} != '0.9.8' ]]; then
pip install paddle2onnx==0.9.8
if [[ -z "$version" || ${version} != '1.0.0' ]]; then
pip install paddle2onnx==1.0.0
fi
./local/paddle2onnx.sh ${train_output_path} inference inference_onnx fastspeech2_csmsc
# considering the balance between speed and quality, we recommend that you use hifigan as vocoder
@ -79,8 +79,8 @@ fi
if [ ${stage} -le 9 ] && [ ${stop_stage} -ge 9 ]; then
# install paddle2onnx
version=$(echo `pip list |grep "paddle2onnx"` |awk -F" " '{print $2}')
if [[ -z "$version" || ${version} != '0.9.8' ]]; then
pip install paddle2onnx==0.9.8
if [[ -z "$version" || ${version} != '1.0.0' ]]; then
pip install paddle2onnx==1.0.0
fi
# streaming acoustic model
./local/paddle2onnx.sh ${train_output_path} inference_streaming inference_onnx_streaming fastspeech2_csmsc_am_encoder_infer

@ -3,7 +3,7 @@
set -e
source path.sh
gpus=0,1
gpus=0,1,2,3
stage=0
stop_stage=100

@ -3,7 +3,7 @@
# Data #
###########################################
dataset: 'paddlespeech.audio.datasets:HeySnips'
data_dir: '/PATH/TO/DATA/hey_snips_research_6k_en_train_eval_clean_ter'
data_dir: '../tests/hey_snips_research_6k_en_train_eval_clean_ter'
############################################
# Network Architecture #
@ -46,4 +46,4 @@ num_workers: 16
checkpoint: './checkpoint/epoch_100/model.pdparams'
score_file: './scores.txt'
stats_file: './stats.0.txt'
img_file: './det.png'
img_file: './det.png'

@ -18,12 +18,62 @@
./run.sh --stage 3 --stop-stage 3
```
## Pretrained Model
The pretrained model can be downloaded here [ernie_linear_p3_iwslt2012_zh_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/text/ernie_linear_p3_iwslt2012_zh_ckpt_0.1.1.zip).
The pretrained model can be downloaded here:
[ernie_linear_p3_iwslt2012_zh_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/text/ernie_linear_p3_iwslt2012_zh_ckpt_0.1.1.zip)
[ernie-3.0-base.tar.gz](https://paddlespeech.bj.bcebos.com/punc_restore/ernie-3.0-base.tar.gz)
[ernie-3.0-medium.tar.gz](https://paddlespeech.bj.bcebos.com/punc_restore/ernie-3.0-medium.tar.gz)
[ernie-3.0-micro.tar.gz](https://paddlespeech.bj.bcebos.com/punc_restore/ernie-3.0-micro.tar.gz)
[ernie-mini.tar.gz](https://paddlespeech.bj.bcebos.com/punc_restore/ernie-mini.tar.gz)
[ernie-nano.tar.gz](https://paddlespeech.bj.bcebos.com/punc_restore/ernie-nano.tar.gz)
[ernie-tiny.tar.gz](https://paddlespeech.bj.bcebos.com/punc_restore/ernie-tiny.tar.gz)
### Test Result
- Ernie
- Ernie 1.0
| |COMMA | PERIOD | QUESTION | OVERALL|
|:-----:|:-----:|:-----:|:-----:|:-----:|
|Precision |0.510955 |0.526462 |0.820755 |0.619391|
|Recall |0.517433 |0.564179 |0.861386 |0.647666|
|F1 |0.514173 |0.544669 |0.840580 |0.633141|
- Ernie-tiny
| |COMMA | PERIOD | QUESTION | OVERALL|
|:-----:|:-----:|:-----:|:-----:|:-----:|
|Precision |0.733177 |0.721448 |0.754717 |0.736447|
|Recall |0.380740 |0.524646 |0.733945 |0.546443|
|F1 |0.501204 |0.607506 |0.744186 |0.617632|
- Ernie-3.0-base-zh
| |COMMA | PERIOD | QUESTION | OVERALL|
|:-----:|:-----:|:-----:|:-----:|:-----:|
|Precision |0.805947 |0.764160 |0.858491 |0.809532|
|Recall |0.399070 |0.567978 |0.850467 |0.605838|
|F1 |0.533817 |0.651623 |0.854460 |0.679967|
- Ernie-3.0-medium-zh
| |COMMA | PERIOD | QUESTION | OVERALL|
|:-----:|:-----:|:-----:|:-----:|:-----:|
|Precision |0.730829 |0.699164 |0.707547 |0.712514|
|Recall |0.388196 |0.533286 |0.797872 |0.573118|
|F1 |0.507058 |0.605062 |0.750000 |0.620707|
- Ernie-3.0-mini-zh
| |COMMA | PERIOD | QUESTION | OVERALL|
|:-----:|:-----:|:-----:|:-----:|:-----:|
|Precision |0.757433 |0.708449 |0.707547 |0.724477|
|Recall |0.355752 |0.506977 |0.735294 |0.532674|
|F1 |0.484121 |0.591015 |0.721154 |0.598763|
- Ernie-3.0-micro-zh
| |COMMA | PERIOD | QUESTION | OVERALL|
|:-----:|:-----:|:-----:|:-----:|:-----:|
|Precision |0.733959 |0.679666 |0.726415 |0.713347|
|Recall |0.332742 |0.483487 |0.712963 |0.509731|
|F1 |0.457896 |0.565033 |0.719626 |0.580852|
- Ernie-3.0-nano-zh
| |COMMA | PERIOD | QUESTION | OVERALL|
|:-----:|:-----:|:-----:|:-----:|:-----:|
|Precision |0.693271 |0.682451 |0.754717 |0.710146|
|Recall |0.327784 |0.491968 |0.666667 |0.495473|
|F1 |0.445114 |0.571762 |0.707965 |0.574947|

@ -1,27 +1,29 @@
import argparse
import os
def process_sentence(line):
if line == '': return ''
res = line[0]
for i in range(1, len(line)):
res += (' ' + line[i])
return res
if line == '':
return ''
res = line[0]
for i in range(1, len(line)):
res += (' ' + line[i])
return res
if __name__ == "__main__":
paser = argparse.ArgumentParser(description = "Input filename")
paser.add_argument('-input_file')
paser.add_argument('-output_file')
sentence_cnt = 0
args = paser.parse_args()
with open(args.input_file, 'r') as f:
with open(args.output_file, 'w') as write_f:
while True:
line = f.readline()
if line:
sentence_cnt += 1
write_f.write(process_sentence(line))
else:
break
print('preprocess over')
print('total sentences number:', sentence_cnt)
paser = argparse.ArgumentParser(description="Input filename")
paser.add_argument('-input_file')
paser.add_argument('-output_file')
sentence_cnt = 0
args = paser.parse_args()
with open(args.input_file, 'r') as f:
with open(args.output_file, 'w') as write_f:
while True:
line = f.readline()
if line:
sentence_cnt += 1
write_f.write(process_sentence(line))
else:
break
print('preprocess over')
print('total sentences number:', sentence_cnt)

@ -46,8 +46,8 @@ fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# install paddle2onnx
version=$(echo `pip list |grep "paddle2onnx"` |awk -F" " '{print $2}')
if [[ -z "$version" || ${version} != '0.9.8' ]]; then
pip install paddle2onnx==0.9.8
if [[ -z "$version" || ${version} != '1.0.0' ]]; then
pip install paddle2onnx==1.0.0
fi
./local/paddle2onnx.sh ${train_output_path} inference inference_onnx fastspeech2_ljspeech
# considering the balance between speed and quality, we recommend that you use hifigan as vocoder

@ -12,13 +12,13 @@ Run the command below to get the results of the test.
./run.sh
```
The `avg WER` of g2p is: 0.024169315564825305
The `avg WER` of g2p is: 0.024075726733983775
```text
,--------------------------------------------------------------------.
| ./exp/g2p/text.g2p |
|--------------------------------------------------------------------|
| SPKR | # Snt # Wrd | Corr Sub Del Ins Err S.Err |
| Sum/Avg| 9996 299181 | 97.6 2.4 0.0 0.0 2.4 49.2 |
| Sum/Avg| 9996 299181 | 97.6 2.4 0.0 0.0 2.4 49.0 |
`--------------------------------------------------------------------'
```

@ -17,15 +17,14 @@ from pathlib import Path
from typing import Union
import yaml
from paddle import distributed as dist
from yacs.config import CfgNode
from paddlespeech.t2s.exps.fastspeech2.train import train_sp
from local.check_oov import get_check_result
from local.extract import extract_feature
from local.label_process import get_single_label
from local.prepare_env import generate_finetune_env
from paddle import distributed as dist
from yacs.config import CfgNode
from paddlespeech.t2s.exps.fastspeech2.train import train_sp
from utils.gen_duration_from_textgrid import gen_duration_from_textgrid
DICT_EN = 'tools/aligner/cmudict-0.7b'

@ -3,7 +3,7 @@
set -e
source path.sh
gpus=0,1
gpus=0,1,2,3,4,5,6,7
stage=0
stop_stage=100

@ -44,8 +44,8 @@ fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# install paddle2onnx
version=$(echo `pip list |grep "paddle2onnx"` |awk -F" " '{print $2}')
if [[ -z "$version" || ${version} != '0.9.8' ]]; then
pip install paddle2onnx==0.9.8
if [[ -z "$version" || ${version} != '1.0.0' ]]; then
pip install paddle2onnx==1.0.0
fi
./local/paddle2onnx.sh ${train_output_path} inference inference_onnx fastspeech2_vctk
# considering the balance between speed and quality, we recommend that you use hifigan as vocoder

@ -5,3 +5,7 @@
| Model | Number of Params | Release | Config | dim | Test set | Cosine | Cosine + S-Norm |
| --- | --- | --- | --- | --- | --- | --- | ---- |
| ECAPA-TDNN | 85M | 0.2.1 | conf/ecapa_tdnn.yaml | 192 | test | 0.8188 | 0.7815|
> [SpeechBrain result](https://github.com/speechbrain/speechbrain/tree/develop/recipes/VoxCeleb/SpeakerRec#speaker-verification-using-ecapa-tdnn-embeddings):
> EER = 0.90% (voxceleb1 + voxceleb2) without s-norm
> EER = 0.80% (voxceleb1 + voxceleb2) with s-norm.

@ -47,8 +47,8 @@ fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# install paddle2onnx
version=$(echo `pip list |grep "paddle2onnx"` |awk -F" " '{print $2}')
if [[ -z "$version" || ${version} != '0.9.8' ]]; then
pip install paddle2onnx==0.9.8
if [[ -z "$version" || ${version} != '1.0.0' ]]; then
pip install paddle2onnx==1.0.0
fi
./local/paddle2onnx.sh ${train_output_path} inference inference_onnx fastspeech2_mix
# considering the balance between speed and quality, we recommend that you use hifigan as vocoder

@ -14,5 +14,3 @@
import _locale
_locale._getdefaultlocale = (lambda *args: ['en_US', 'utf8'])

@ -14,12 +14,12 @@
from . import compliance
from . import datasets
from . import features
from . import text
from . import transform
from . import streamdata
from . import functional
from . import io
from . import metric
from . import sox_effects
from . import streamdata
from . import text
from . import transform
from .backends import load
from .backends import save

@ -4,67 +4,66 @@
# Modified from https://github.com/webdataset/webdataset
#
# flake8: noqa
from .cache import (
cached_tarfile_samples,
cached_tarfile_to_samples,
lru_cleanup,
pipe_cleaner,
)
from .compat import WebDataset, WebLoader, FluidWrapper
from .extradatasets import MockDataset, with_epoch, with_length
from .filters import (
associate,
batched,
decode,
detshuffle,
extract_keys,
getfirst,
info,
map,
map_dict,
map_tuple,
pipelinefilter,
rename,
rename_keys,
audio_resample,
select,
shuffle,
slice,
to_tuple,
transform_with,
unbatched,
xdecode,
audio_data_filter,
audio_tokenize,
audio_resample,
audio_compute_fbank,
audio_spec_aug,
sort,
audio_padding,
audio_cmvn,
placeholder,
)
from .handlers import (
ignore_and_continue,
ignore_and_stop,
reraise_exception,
warn_and_continue,
warn_and_stop,
)
from .cache import cached_tarfile_samples
from .cache import cached_tarfile_to_samples
from .cache import lru_cleanup
from .cache import pipe_cleaner
from .compat import FluidWrapper
from .compat import WebDataset
from .compat import WebLoader
from .extradatasets import MockDataset
from .extradatasets import with_epoch
from .extradatasets import with_length
from .filters import associate
from .filters import audio_cmvn
from .filters import audio_compute_fbank
from .filters import audio_data_filter
from .filters import audio_padding
from .filters import audio_resample
from .filters import audio_spec_aug
from .filters import audio_tokenize
from .filters import batched
from .filters import decode
from .filters import detshuffle
from .filters import extract_keys
from .filters import getfirst
from .filters import info
from .filters import map
from .filters import map_dict
from .filters import map_tuple
from .filters import pipelinefilter
from .filters import placeholder
from .filters import rename
from .filters import rename_keys
from .filters import select
from .filters import shuffle
from .filters import slice
from .filters import sort
from .filters import to_tuple
from .filters import transform_with
from .filters import unbatched
from .filters import xdecode
from .handlers import ignore_and_continue
from .handlers import ignore_and_stop
from .handlers import reraise_exception
from .handlers import warn_and_continue
from .handlers import warn_and_stop
from .mix import RandomMix
from .mix import RoundRobin
from .pipeline import DataPipeline
from .shardlists import (
MultiShardSample,
ResampledShards,
SimpleShardList,
non_empty,
resampled,
shardspec,
single_node_only,
split_by_node,
split_by_worker,
)
from .tariterators import tarfile_samples, tarfile_to_samples
from .utils import PipelineStage, repeatedly
from .writer import ShardWriter, TarWriter, numpy_dumps
from .mix import RandomMix, RoundRobin
from .shardlists import MultiShardSample
from .shardlists import non_empty
from .shardlists import resampled
from .shardlists import ResampledShards
from .shardlists import shardspec
from .shardlists import SimpleShardList
from .shardlists import single_node_only
from .shardlists import split_by_node
from .shardlists import split_by_worker
from .tariterators import tarfile_samples
from .tariterators import tarfile_to_samples
from .utils import PipelineStage
from .utils import repeatedly
from .writer import numpy_dumps
from .writer import ShardWriter
from .writer import TarWriter

@ -5,18 +5,19 @@
# See the LICENSE file for licensing terms (BSD-style).
# Modified from https://github.com/webdataset/webdataset
#
"""Automatically decode webdataset samples."""
import io, json, os, pickle, re, tempfile
import io
import json
import os
import pickle
import re
import tempfile
from functools import partial
import numpy as np
"""Extensions passed on to the image decoder."""
image_extensions = "jpg jpeg png ppm pgm pbm pnm".split()
################################################################
# handle basic datatypes
################################################################
@ -128,7 +129,7 @@ def call_extension_handler(key, data, f, extensions):
target = target.split(".")
if len(target) > len(extension):
continue
if extension[-len(target) :] == target:
if extension[-len(target):] == target:
return f(data)
return None
@ -268,7 +269,6 @@ def imagehandler(imagespec, extensions=image_extensions):
################################################################
# torch video
################################################################
'''
def torch_video(key, data):
"""Decode video using the torchvideo library.
@ -289,7 +289,6 @@ def torch_video(key, data):
return torchvision.io.read_video(fname, pts_unit="sec")
'''
################################################################
# paddlespeech.audio
################################################################
@ -359,7 +358,6 @@ def gzfilter(key, data):
# decode entire training amples
################################################################
default_pre_handlers = [gzfilter]
default_post_handlers = [basichandlers]
@ -387,7 +385,8 @@ class Decoder:
pre = default_pre_handlers
if post is None:
post = default_post_handlers
assert all(callable(h) for h in handlers), f"one of {handlers} not callable"
assert all(callable(h)
for h in handlers), f"one of {handlers} not callable"
assert all(callable(h) for h in pre), f"one of {pre} not callable"
assert all(callable(h) for h in post), f"one of {post} not callable"
self.handlers = pre + handlers + post

@ -2,7 +2,10 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# See the LICENSE file for licensing terms (BSD-style).
# Modified from https://github.com/webdataset/webdataset
import itertools, os, random, re, sys
import os
import random
import re
import sys
from urllib.parse import urlparse
from . import filters
@ -40,7 +43,7 @@ def lru_cleanup(cache_dir, cache_size, keyfn=os.path.getctime, verbose=False):
os.remove(fname)
def download(url, dest, chunk_size=1024 ** 2, verbose=False):
def download(url, dest, chunk_size=1024**2, verbose=False):
"""Download a file from `url` to `dest`."""
temp = dest + f".temp{os.getpid()}"
with gopen.gopen(url) as stream:
@ -65,12 +68,11 @@ def pipe_cleaner(spec):
def get_file_cached(
spec,
cache_size=-1,
cache_dir=None,
url_to_name=pipe_cleaner,
verbose=False,
):
spec,
cache_size=-1,
cache_dir=None,
url_to_name=pipe_cleaner,
verbose=False, ):
if cache_size == -1:
cache_size = default_cache_size
if cache_dir is None:
@ -107,15 +109,14 @@ verbose_cache = int(os.environ.get("WDS_VERBOSE_CACHE", "0"))
def cached_url_opener(
data,
handler=reraise_exception,
cache_size=-1,
cache_dir=None,
url_to_name=pipe_cleaner,
validator=check_tar_format,
verbose=False,
always=False,
):
data,
handler=reraise_exception,
cache_size=-1,
cache_dir=None,
url_to_name=pipe_cleaner,
validator=check_tar_format,
verbose=False,
always=False, ):
"""Given a stream of url names (packaged in `dict(url=url)`), yield opened streams."""
verbose = verbose or verbose_cache
for sample in data:
@ -132,8 +133,7 @@ def cached_url_opener(
cache_size=cache_size,
cache_dir=cache_dir,
url_to_name=url_to_name,
verbose=verbose,
)
verbose=verbose, )
if verbose:
print("# opening %s" % dest, file=sys.stderr)
assert os.path.exists(dest)
@ -143,9 +143,8 @@ def cached_url_opener(
data = f.read(200)
os.remove(dest)
raise ValueError(
"%s (%s) is not a tar archive, but a %s, contains %s"
% (dest, url, ftype, repr(data))
)
"%s (%s) is not a tar archive, but a %s, contains %s" %
(dest, url, ftype, repr(data)))
try:
stream = open(dest, "rb")
sample.update(stream=stream)
@ -158,7 +157,7 @@ def cached_url_opener(
continue
raise exn
except Exception as exn:
exn.args = exn.args + (url,)
exn.args = exn.args + (url, )
if handler(exn):
continue
else:
@ -166,14 +165,13 @@ def cached_url_opener(
def cached_tarfile_samples(
src,
handler=reraise_exception,
cache_size=-1,
cache_dir=None,
verbose=False,
url_to_name=pipe_cleaner,
always=False,
):
src,
handler=reraise_exception,
cache_size=-1,
cache_dir=None,
verbose=False,
url_to_name=pipe_cleaner,
always=False, ):
streams = cached_url_opener(
src,
handler=handler,
@ -181,8 +179,7 @@ def cached_tarfile_samples(
cache_dir=cache_dir,
verbose=verbose,
url_to_name=url_to_name,
always=always,
)
always=always, )
samples = tar_file_and_group_expander(streams, handler=handler)
return samples

@ -2,17 +2,17 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# See the LICENSE file for licensing terms (BSD-style).
# Modified from https://github.com/webdataset/webdataset
from dataclasses import dataclass
from itertools import islice
from typing import List
import braceexpand, yaml
import yaml
from . import autodecode
from . import cache, filters, shardlists, tariterators
from . import cache
from . import filters
from . import shardlists
from . import tariterators
from .filters import reraise_exception
from .paddle_utils import DataLoader
from .paddle_utils import IterableDataset
from .pipeline import DataPipeline
from .paddle_utils import DataLoader, IterableDataset
class FluidInterface:
@ -26,7 +26,8 @@ class FluidInterface:
return self.compose(filters.unbatched())
def listed(self, batchsize, partial=True):
return self.compose(filters.batched(), batchsize=batchsize, collation_fn=None)
return self.compose(
filters.batched(), batchsize=batchsize, collation_fn=None)
def unlisted(self):
return self.compose(filters.unlisted())
@ -43,9 +44,19 @@ class FluidInterface:
def map(self, f, handler=reraise_exception):
return self.compose(filters.map(f, handler=handler))
def decode(self, *args, pre=None, post=None, only=None, partial=False, handler=reraise_exception):
handlers = [autodecode.ImageHandler(x) if isinstance(x, str) else x for x in args]
decoder = autodecode.Decoder(handlers, pre=pre, post=post, only=only, partial=partial)
def decode(self,
*args,
pre=None,
post=None,
only=None,
partial=False,
handler=reraise_exception):
handlers = [
autodecode.ImageHandler(x) if isinstance(x, str) else x
for x in args
]
decoder = autodecode.Decoder(
handlers, pre=pre, post=post, only=only, partial=partial)
return self.map(decoder, handler=handler)
def map_dict(self, handler=reraise_exception, **kw):
@ -80,12 +91,12 @@ class FluidInterface:
def audio_data_filter(self, *args, **kw):
return self.compose(filters.audio_data_filter(*args, **kw))
def audio_tokenize(self, *args, **kw):
return self.compose(filters.audio_tokenize(*args, **kw))
def resample(self, *args, **kw):
return self.compose(filters.resample(*args, **kw))
return self.compose(filters.resample(*args, **kw))
def audio_compute_fbank(self, *args, **kw):
return self.compose(filters.audio_compute_fbank(*args, **kw))
@ -102,27 +113,28 @@ class FluidInterface:
def audio_cmvn(self, cmvn_file):
return self.compose(filters.audio_cmvn(cmvn_file))
class WebDataset(DataPipeline, FluidInterface):
"""Small fluid-interface wrapper for DataPipeline."""
def __init__(
self,
urls,
handler=reraise_exception,
resampled=False,
repeat=False,
shardshuffle=None,
cache_size=0,
cache_dir=None,
detshuffle=False,
nodesplitter=shardlists.single_node_only,
verbose=False,
):
self,
urls,
handler=reraise_exception,
resampled=False,
repeat=False,
shardshuffle=None,
cache_size=0,
cache_dir=None,
detshuffle=False,
nodesplitter=shardlists.single_node_only,
verbose=False, ):
super().__init__()
if isinstance(urls, IterableDataset):
assert not resampled
self.append(urls)
elif isinstance(urls, str) and (urls.endswith(".yaml") or urls.endswith(".yml")):
elif isinstance(urls, str) and (urls.endswith(".yaml") or
urls.endswith(".yml")):
with (open(urls)) as stream:
spec = yaml.safe_load(stream)
assert "datasets" in spec
@ -152,9 +164,7 @@ class WebDataset(DataPipeline, FluidInterface):
handler=handler,
verbose=verbose,
cache_size=cache_size,
cache_dir=cache_dir,
)
)
cache_dir=cache_dir, ))
class FluidWrapper(DataPipeline, FluidInterface):

@ -5,20 +5,10 @@
# See the LICENSE file for licensing terms (BSD-style).
# Modified from https://github.com/webdataset/webdataset
#
"""Train PyTorch models directly from POSIX tar archive.
Code works locally or over HTTP connections.
"""
import itertools as itt
import os
import random
import sys
import braceexpand
from . import utils
from .paddle_utils import IterableDataset
from .utils import PipelineStage
@ -63,8 +53,7 @@ class repeatedly(IterableDataset, PipelineStage):
return utils.repeatedly(
source,
nepochs=self.nepochs,
nbatches=self.nbatches,
)
nbatches=self.nbatches, )
class with_epoch(IterableDataset):

@ -3,7 +3,6 @@
# This file is part of the WebDataset library.
# See the LICENSE file for licensing terms (BSD-style).
#
# Modified from https://github.com/webdataset/webdataset
# Modified from wenet(https://github.com/wenet-e2e/wenet)
"""A collection of iterators for data transformations.
@ -12,28 +11,29 @@ These functions are plain iterator functions. You can find curried versions
in webdataset.filters, and you can find IterableDataset wrappers in
webdataset.processing.
"""
import io
from fnmatch import fnmatch
import itertools
import os
import random
import re
import itertools, os, random, sys, time
from functools import reduce, wraps
import sys
import time
from fnmatch import fnmatch
from functools import reduce
import numpy as np
import paddle
from . import autodecode
from . import utils
from .paddle_utils import PaddleTensor
from .utils import PipelineStage
from . import utils
from .. import backends
from ..compliance import kaldi
import paddle
from ..transform.cmvn import GlobalCMVN
from ..utils.tensor_utils import pad_sequence
from ..transform.spec_augment import time_warp
from ..transform.spec_augment import time_mask
from ..transform.spec_augment import freq_mask
from ..transform.spec_augment import time_mask
from ..transform.spec_augment import time_warp
from ..utils.tensor_utils import pad_sequence
from .utils import PipelineStage
class FilterFunction(object):
"""Helper class for currying pipeline stages.
@ -159,10 +159,12 @@ def transform_with(sample, transformers):
result[i] = f(sample[i])
return result
###
# Iterators
###
def _info(data, fmt=None, n=3, every=-1, width=50, stream=sys.stderr, name=""):
"""Print information about the samples that are passing through.
@ -278,10 +280,16 @@ def _log_keys(data, logfile=None):
log_keys = pipelinefilter(_log_keys)
def _minedecode(x):
if isinstance(x, str):
return autodecode.imagehandler(x)
else:
return x
def _decode(data, *args, handler=reraise_exception, **kw):
"""Decode data based on the decoding functions given as arguments."""
decoder = lambda x: autodecode.imagehandler(x) if isinstance(x, str) else x
decoder = _minedecode
handlers = [decoder(x) for x in args]
f = autodecode.Decoder(handlers, **kw)
@ -325,15 +333,24 @@ def _rename(data, handler=reraise_exception, keep=True, **kw):
for sample in data:
try:
if not keep:
yield {k: getfirst(sample, v, missing_is_error=True) for k, v in kw.items()}
yield {
k: getfirst(sample, v, missing_is_error=True)
for k, v in kw.items()
}
else:
def listify(v):
return v.split(";") if isinstance(v, str) else v
to_be_replaced = {x for v in kw.values() for x in listify(v)}
result = {k: v for k, v in sample.items() if k not in to_be_replaced}
result.update({k: getfirst(sample, v, missing_is_error=True) for k, v in kw.items()})
result = {
k: v
for k, v in sample.items() if k not in to_be_replaced
}
result.update({
k: getfirst(sample, v, missing_is_error=True)
for k, v in kw.items()
})
yield result
except Exception as exn:
if handler(exn):
@ -381,7 +398,11 @@ def _map_dict(data, handler=reraise_exception, **kw):
map_dict = pipelinefilter(_map_dict)
def _to_tuple(data, *args, handler=reraise_exception, missing_is_error=True, none_is_error=None):
def _to_tuple(data,
*args,
handler=reraise_exception,
missing_is_error=True,
none_is_error=None):
"""Convert dict samples to tuples."""
if none_is_error is None:
none_is_error = missing_is_error
@ -390,7 +411,10 @@ def _to_tuple(data, *args, handler=reraise_exception, missing_is_error=True, non
for sample in data:
try:
result = tuple([getfirst(sample, f, missing_is_error=missing_is_error) for f in args])
result = tuple([
getfirst(sample, f, missing_is_error=missing_is_error)
for f in args
])
if none_is_error and any(x is None for x in result):
raise ValueError(f"to_tuple {args} got {sample.keys()}")
yield result
@ -463,19 +487,28 @@ rsample = pipelinefilter(_rsample)
slice = pipelinefilter(itertools.islice)
def _extract_keys(source, *patterns, duplicate_is_error=True, ignore_missing=False):
def _extract_keys(source,
*patterns,
duplicate_is_error=True,
ignore_missing=False):
for sample in source:
result = []
for pattern in patterns:
pattern = pattern.split(";") if isinstance(pattern, str) else pattern
matches = [x for x in sample.keys() if any(fnmatch("." + x, p) for p in pattern)]
pattern = pattern.split(";") if isinstance(pattern,
str) else pattern
matches = [
x for x in sample.keys()
if any(fnmatch("." + x, p) for p in pattern)
]
if len(matches) == 0:
if ignore_missing:
continue
else:
raise ValueError(f"Cannot find {pattern} in sample keys {sample.keys()}.")
raise ValueError(
f"Cannot find {pattern} in sample keys {sample.keys()}.")
if len(matches) > 1 and duplicate_is_error:
raise ValueError(f"Multiple sample keys {sample.keys()} match {pattern}.")
raise ValueError(
f"Multiple sample keys {sample.keys()} match {pattern}.")
value = sample[matches[0]]
result.append(value)
yield tuple(result)
@ -484,7 +517,12 @@ def _extract_keys(source, *patterns, duplicate_is_error=True, ignore_missing=Fal
extract_keys = pipelinefilter(_extract_keys)
def _rename_keys(source, *args, keep_unselected=False, must_match=True, duplicate_is_error=True, **kw):
def _rename_keys(source,
*args,
keep_unselected=False,
must_match=True,
duplicate_is_error=True,
**kw):
renamings = [(pattern, output) for output, pattern in args]
renamings += [(pattern, output) for output, pattern in kw.items()]
for sample in source:
@ -504,11 +542,15 @@ def _rename_keys(source, *args, keep_unselected=False, must_match=True, duplicat
continue
if new_name in new_sample:
if duplicate_is_error:
raise ValueError(f"Duplicate value in sample {sample.keys()} after rename.")
raise ValueError(
f"Duplicate value in sample {sample.keys()} after rename."
)
continue
new_sample[new_name] = value
if must_match and not all(matched.values()):
raise ValueError(f"Not all patterns ({matched}) matched sample keys ({sample.keys()}).")
raise ValueError(
f"Not all patterns ({matched}) matched sample keys ({sample.keys()})."
)
yield new_sample
@ -541,18 +583,18 @@ def find_decoder(decoders, path):
if fname.startswith("__"):
return lambda x: x
for pattern, fun in decoders[::-1]:
if fnmatch(fname.lower(), pattern) or fnmatch("." + fname.lower(), pattern):
if fnmatch(fname.lower(), pattern) or fnmatch("." + fname.lower(),
pattern):
return fun
return None
def _xdecode(
source,
*args,
must_decode=True,
defaults=default_decoders,
**kw,
):
source,
*args,
must_decode=True,
defaults=default_decoders,
**kw, ):
decoders = list(defaults) + list(args)
decoders += [("*." + k, v) for k, v in kw.items()]
for sample in source:
@ -575,18 +617,18 @@ def _xdecode(
new_sample[path] = value
yield new_sample
xdecode = pipelinefilter(_xdecode)
xdecode = pipelinefilter(_xdecode)
def _audio_data_filter(source,
frame_shift=10,
max_length=10240,
min_length=10,
token_max_length=200,
token_min_length=1,
min_output_input_ratio=0.0005,
max_output_input_ratio=1):
frame_shift=10,
max_length=10240,
min_length=10,
token_max_length=200,
token_min_length=1,
min_output_input_ratio=0.0005,
max_output_input_ratio=1):
""" Filter sample according to feature and label length
Inplace operation.
@ -613,7 +655,8 @@ def _audio_data_filter(source,
assert 'wav' in sample
assert 'label' in sample
# sample['wav'] is paddle.Tensor, we have 100 frames every second (default)
num_frames = sample['wav'].shape[1] / sample['sample_rate'] * (1000 / frame_shift)
num_frames = sample['wav'].shape[1] / sample['sample_rate'] * (
1000 / frame_shift)
if num_frames < min_length:
continue
if num_frames > max_length:
@ -629,13 +672,15 @@ def _audio_data_filter(source,
continue
yield sample
audio_data_filter = pipelinefilter(_audio_data_filter)
def _audio_tokenize(source,
symbol_table,
bpe_model=None,
non_lang_syms=None,
split_with_space=False):
symbol_table,
bpe_model=None,
non_lang_syms=None,
split_with_space=False):
""" Decode text to chars or BPE
Inplace operation
@ -693,8 +738,10 @@ def _audio_tokenize(source,
sample['label'] = label
yield sample
audio_tokenize = pipelinefilter(_audio_tokenize)
def _audio_resample(source, resample_rate=16000):
""" Resample data.
Inplace operation.
@ -713,18 +760,22 @@ def _audio_resample(source, resample_rate=16000):
waveform = sample['wav']
if sample_rate != resample_rate:
sample['sample_rate'] = resample_rate
sample['wav'] = paddle.to_tensor(backends.soundfile_backend.resample(
waveform.numpy(), src_sr = sample_rate, target_sr = resample_rate
))
sample['wav'] = paddle.to_tensor(
backends.soundfile_backend.resample(
waveform.numpy(),
src_sr=sample_rate,
target_sr=resample_rate))
yield sample
audio_resample = pipelinefilter(_audio_resample)
def _audio_compute_fbank(source,
num_mel_bins=80,
frame_length=25,
frame_shift=10,
dither=0.0):
num_mel_bins=80,
frame_length=25,
frame_shift=10,
dither=0.0):
""" Extract fbank
Args:
@ -746,30 +797,33 @@ def _audio_compute_fbank(source,
waveform = sample['wav']
waveform = waveform * (1 << 15)
# Only keep fname, feat, label
mat = kaldi.fbank(waveform,
n_mels=num_mel_bins,
frame_length=frame_length,
frame_shift=frame_shift,
dither=dither,
energy_floor=0.0,
sr=sample_rate)
mat = kaldi.fbank(
waveform,
n_mels=num_mel_bins,
frame_length=frame_length,
frame_shift=frame_shift,
dither=dither,
energy_floor=0.0,
sr=sample_rate)
yield dict(fname=sample['fname'], label=sample['label'], feat=mat)
audio_compute_fbank = pipelinefilter(_audio_compute_fbank)
def _audio_spec_aug(source,
max_w=5,
w_inplace=True,
w_mode="PIL",
max_f=30,
num_f_mask=2,
f_inplace=True,
f_replace_with_zero=False,
max_t=40,
num_t_mask=2,
t_inplace=True,
t_replace_with_zero=False,):
def _audio_spec_aug(
source,
max_w=5,
w_inplace=True,
w_mode="PIL",
max_f=30,
num_f_mask=2,
f_inplace=True,
f_replace_with_zero=False,
max_t=40,
num_t_mask=2,
t_inplace=True,
t_replace_with_zero=False, ):
""" Do spec augmentation
Inplace operation
@ -793,12 +847,23 @@ def _audio_spec_aug(source,
for sample in source:
x = sample['feat']
x = x.numpy()
x = time_warp(x, max_time_warp=max_w, inplace = w_inplace, mode= w_mode)
x = freq_mask(x, F = max_f, n_mask = num_f_mask, inplace = f_inplace, replace_with_zero = f_replace_with_zero)
x = time_mask(x, T = max_t, n_mask = num_t_mask, inplace = t_inplace, replace_with_zero = t_replace_with_zero)
x = time_warp(x, max_time_warp=max_w, inplace=w_inplace, mode=w_mode)
x = freq_mask(
x,
F=max_f,
n_mask=num_f_mask,
inplace=f_inplace,
replace_with_zero=f_replace_with_zero)
x = time_mask(
x,
T=max_t,
n_mask=num_t_mask,
inplace=t_inplace,
replace_with_zero=t_replace_with_zero)
sample['feat'] = paddle.to_tensor(x, dtype=paddle.float32)
yield sample
audio_spec_aug = pipelinefilter(_audio_spec_aug)
@ -829,8 +894,10 @@ def _sort(source, sort_size=500):
for x in buf:
yield x
sort = pipelinefilter(_sort)
def _batched(source, batch_size=16):
""" Static batch the data by `batch_size`
@ -850,8 +917,10 @@ def _batched(source, batch_size=16):
if len(buf) > 0:
yield buf
batched = pipelinefilter(_batched)
def dynamic_batched(source, max_frames_in_batch=12000):
""" Dynamic batch the data until the total frames in batch
reach `max_frames_in_batch`
@ -892,8 +961,8 @@ def _audio_padding(source):
"""
for sample in source:
assert isinstance(sample, list)
feats_length = paddle.to_tensor([x['feat'].shape[0] for x in sample],
dtype="int64")
feats_length = paddle.to_tensor(
[x['feat'].shape[0] for x in sample], dtype="int64")
order = paddle.argsort(feats_length, descending=True)
feats_lengths = paddle.to_tensor(
[sample[i]['feat'].shape[0] for i in order], dtype="int64")
@ -902,20 +971,20 @@ def _audio_padding(source):
sorted_labels = [
paddle.to_tensor(sample[i]['label'], dtype="int32") for i in order
]
label_lengths = paddle.to_tensor([x.shape[0] for x in sorted_labels],
dtype="int64")
padded_feats = pad_sequence(sorted_feats,
batch_first=True,
padding_value=0)
padding_labels = pad_sequence(sorted_labels,
batch_first=True,
padding_value=-1)
yield (sorted_keys, padded_feats, feats_lengths, padding_labels,
label_lengths = paddle.to_tensor(
[x.shape[0] for x in sorted_labels], dtype="int64")
padded_feats = pad_sequence(
sorted_feats, batch_first=True, padding_value=0)
padding_labels = pad_sequence(
sorted_labels, batch_first=True, padding_value=-1)
yield (sorted_keys, padded_feats, feats_lengths, padding_labels,
label_lengths)
audio_padding = pipelinefilter(_audio_padding)
def _audio_cmvn(source, cmvn_file):
global_cmvn = GlobalCMVN(cmvn_file)
for batch in source:
@ -923,13 +992,16 @@ def _audio_cmvn(source, cmvn_file):
padded_feats = padded_feats.numpy()
padded_feats = global_cmvn(padded_feats)
padded_feats = paddle.to_tensor(padded_feats, dtype=paddle.float32)
yield (sorted_keys, padded_feats, feats_lengths, padding_labels,
label_lengths)
yield (sorted_keys, padded_feats, feats_lengths, padding_labels,
label_lengths)
audio_cmvn = pipelinefilter(_audio_cmvn)
def _placeholder(source):
for data in source:
yield data
placeholder = pipelinefilter(_placeholder)

@ -3,12 +3,12 @@
# This file is part of the WebDataset library.
# See the LICENSE file for licensing terms (BSD-style).
#
"""Open URLs by calling subcommands."""
import os, sys, re
from subprocess import PIPE, Popen
import os
import re
import sys
from subprocess import PIPE
from subprocess import Popen
from urllib.parse import urlparse
# global used for printing additional node information during verbose output
@ -31,14 +31,13 @@ class Pipe:
"""
def __init__(
self,
*args,
mode=None,
timeout=7200.0,
ignore_errors=False,
ignore_status=[],
**kw,
):
self,
*args,
mode=None,
timeout=7200.0,
ignore_errors=False,
ignore_status=[],
**kw, ):
"""Create an IO Pipe."""
self.ignore_errors = ignore_errors
self.ignore_status = [0] + ignore_status
@ -75,8 +74,7 @@ class Pipe:
if verbose:
print(
f"pipe exit [{self.status} {os.getpid()}:{self.proc.pid}] {self.args} {info}",
file=sys.stderr,
)
file=sys.stderr, )
if self.status not in self.ignore_status and not self.ignore_errors:
raise Exception(f"{self.args}: exit {self.status} (read) {info}")
@ -114,9 +112,11 @@ class Pipe:
self.close()
def set_options(
obj, timeout=None, ignore_errors=None, ignore_status=None, handler=None
):
def set_options(obj,
timeout=None,
ignore_errors=None,
ignore_status=None,
handler=None):
"""Set options for Pipes.
This function can be called on any stream. It will set pipe options only
@ -168,16 +168,14 @@ def gopen_pipe(url, mode="rb", bufsize=8192):
mode=mode,
shell=True,
bufsize=bufsize,
ignore_status=[141],
) # skipcq: BAN-B604
ignore_status=[141], ) # skipcq: BAN-B604
elif mode[0] == "w":
return Pipe(
cmd,
mode=mode,
shell=True,
bufsize=bufsize,
ignore_status=[141],
) # skipcq: BAN-B604
ignore_status=[141], ) # skipcq: BAN-B604
else:
raise ValueError(f"{mode}: unknown mode")
@ -196,8 +194,7 @@ def gopen_curl(url, mode="rb", bufsize=8192):
mode=mode,
shell=True,
bufsize=bufsize,
ignore_status=[141, 23],
) # skipcq: BAN-B604
ignore_status=[141, 23], ) # skipcq: BAN-B604
elif mode[0] == "w":
cmd = f"curl -s -L -T - '{url}'"
return Pipe(
@ -205,8 +202,7 @@ def gopen_curl(url, mode="rb", bufsize=8192):
mode=mode,
shell=True,
bufsize=bufsize,
ignore_status=[141, 26],
) # skipcq: BAN-B604
ignore_status=[141, 26], ) # skipcq: BAN-B604
else:
raise ValueError(f"{mode}: unknown mode")
@ -226,15 +222,13 @@ def gopen_htgs(url, mode="rb", bufsize=8192):
mode=mode,
shell=True,
bufsize=bufsize,
ignore_status=[141, 23],
) # skipcq: BAN-B604
ignore_status=[141, 23], ) # skipcq: BAN-B604
elif mode[0] == "w":
raise ValueError(f"{mode}: cannot write")
else:
raise ValueError(f"{mode}: unknown mode")
def gopen_gsutil(url, mode="rb", bufsize=8192):
"""Open a URL with `curl`.
@ -249,8 +243,7 @@ def gopen_gsutil(url, mode="rb", bufsize=8192):
mode=mode,
shell=True,
bufsize=bufsize,
ignore_status=[141, 23],
) # skipcq: BAN-B604
ignore_status=[141, 23], ) # skipcq: BAN-B604
elif mode[0] == "w":
cmd = f"gsutil cp - '{url}'"
return Pipe(
@ -258,13 +251,11 @@ def gopen_gsutil(url, mode="rb", bufsize=8192):
mode=mode,
shell=True,
bufsize=bufsize,
ignore_status=[141, 26],
) # skipcq: BAN-B604
ignore_status=[141, 26], ) # skipcq: BAN-B604
else:
raise ValueError(f"{mode}: unknown mode")
def gopen_error(url, *args, **kw):
"""Raise a value error.
@ -285,8 +276,7 @@ gopen_schemes = dict(
ftps=gopen_curl,
scp=gopen_curl,
gs=gopen_gsutil,
htgs=gopen_htgs,
)
htgs=gopen_htgs, )
def gopen(url, mode="rb", bufsize=8192, **kw):

@ -3,7 +3,6 @@
# This file is part of the WebDataset library.
# See the LICENSE file for licensing terms (BSD-style).
#
"""Pluggable exception handlers.
These are functions that take an exception as an argument and then return...
@ -14,8 +13,8 @@ These are functions that take an exception as an argument and then return...
They are used as handler= arguments in much of the library.
"""
import time, warnings
import time
import warnings
def reraise_exception(exn):

@ -5,17 +5,12 @@
# See the LICENSE file for licensing terms (BSD-style).
# Modified from https://github.com/webdataset/webdataset
#
"""Classes for mixing samples from multiple sources."""
import itertools, os, random, time, sys
from functools import reduce, wraps
import random
import numpy as np
from . import autodecode, utils
from .paddle_utils import PaddleTensor, IterableDataset
from .utils import PipelineStage
from .paddle_utils import IterableDataset
def round_robin_shortest(*sources):

@ -5,12 +5,11 @@
# See the LICENSE file for licensing terms (BSD-style).
# Modified from https://github.com/webdataset/webdataset
#
"""Mock implementations of paddle interfaces when paddle is not available."""
try:
from paddle.io import DataLoader, IterableDataset
from paddle.io import DataLoader
from paddle.io import IterableDataset
except ModuleNotFoundError:
class IterableDataset:
@ -22,12 +21,3 @@ except ModuleNotFoundError:
"""Empty implementation of DataLoader when paddle is not available."""
pass
try:
from paddle import Tensor as PaddleTensor
except ModuleNotFoundError:
class TorchTensor:
"""Empty implementation of PaddleTensor when paddle is not available."""
pass

@ -3,15 +3,12 @@
# See the LICENSE file for licensing terms (BSD-style).
# Modified from https://github.com/webdataset/webdataset
#%%
import copy, os, random, sys, time
from dataclasses import dataclass
import copy
import sys
from itertools import islice
from typing import List
import braceexpand, yaml
from .handlers import reraise_exception
from .paddle_utils import DataLoader, IterableDataset
from .paddle_utils import DataLoader
from .paddle_utils import IterableDataset
from .utils import PipelineStage
@ -22,8 +19,7 @@ def add_length_method(obj):
Combined = type(
obj.__class__.__name__ + "_Length",
(obj.__class__, IterableDataset),
{"__len__": length},
)
{"__len__": length}, )
obj.__class__ = Combined
return obj

@ -4,28 +4,30 @@
# This file is part of the WebDataset library.
# See the LICENSE file for licensing terms (BSD-style).
#
# Modified from https://github.com/webdataset/webdataset
"""Train PyTorch models directly from POSIX tar archive.
Code works locally or over HTTP connections.
"""
import os, random, sys, time
from dataclasses import dataclass, field
import os
import random
import sys
import time
from dataclasses import dataclass
from dataclasses import field
from itertools import islice
from typing import List
import braceexpand, yaml
import braceexpand
import yaml
from . import utils
from ..utils.log import Logger
from .filters import pipelinefilter
from .paddle_utils import IterableDataset
logger = Logger(__name__)
from ..utils.log import Logger
logger = Logger(__name__)
def expand_urls(urls):
if isinstance(urls, str):
urllist = urls.split("::")
@ -64,7 +66,8 @@ class SimpleShardList(IterableDataset):
def split_by_node(src, group=None):
rank, world_size, worker, num_workers = utils.paddle_worker_info(group=group)
rank, world_size, worker, num_workers = utils.paddle_worker_info(
group=group)
logger.info(f"world_size:{world_size}, rank:{rank}")
if world_size > 1:
for s in islice(src, rank, None, world_size):
@ -75,9 +78,11 @@ def split_by_node(src, group=None):
def single_node_only(src, group=None):
rank, world_size, worker, num_workers = utils.paddle_worker_info(group=group)
rank, world_size, worker, num_workers = utils.paddle_worker_info(
group=group)
if world_size > 1:
raise ValueError("input pipeline needs to be reconfigured for multinode training")
raise ValueError(
"input pipeline needs to be reconfigured for multinode training")
for s in src:
yield s
@ -104,7 +109,8 @@ def resampled_(src, n=sys.maxsize):
rng = random.Random(seed)
print("# resampled loading", file=sys.stderr)
items = list(src)
print(f"# resampled got {len(items)} samples, yielding {n}", file=sys.stderr)
print(
f"# resampled got {len(items)} samples, yielding {n}", file=sys.stderr)
for i in range(n):
yield rng.choice(items)
@ -118,7 +124,9 @@ def non_empty(src):
yield s
count += 1
if count == 0:
raise ValueError("pipeline stage received no data at all and this was declared as an error")
raise ValueError(
"pipeline stage received no data at all and this was declared as an error"
)
@dataclass
@ -138,10 +146,6 @@ def expand(s):
return os.path.expanduser(os.path.expandvars(s))
class MultiShardSample(IterableDataset):
def __init__(self, fname):
"""Construct a shardlist from multiple sources using a YAML spec."""
self.epoch = -1
class MultiShardSample(IterableDataset):
def __init__(self, fname):
"""Construct a shardlist from multiple sources using a YAML spec."""
@ -156,20 +160,23 @@ class MultiShardSample(IterableDataset):
else:
with open(fname) as stream:
spec = yaml.safe_load(stream)
assert set(spec.keys()).issubset(set("prefix datasets buckets".split())), list(spec.keys())
assert set(spec.keys()).issubset(
set("prefix datasets buckets".split())), list(spec.keys())
prefix = expand(spec.get("prefix", ""))
self.sources = []
for ds in spec["datasets"]:
assert set(ds.keys()).issubset(set("buckets name shards resample choose".split())), list(
ds.keys()
)
assert set(ds.keys()).issubset(
set("buckets name shards resample choose".split())), list(
ds.keys())
buckets = ds.get("buckets", spec.get("buckets", []))
if isinstance(buckets, str):
buckets = [buckets]
buckets = [expand(s) for s in buckets]
if buckets == []:
buckets = [""]
assert len(buckets) == 1, f"{buckets}: FIXME support for multiple buckets unimplemented"
assert len(
buckets
) == 1, f"{buckets}: FIXME support for multiple buckets unimplemented"
bucket = buckets[0]
name = ds.get("name", "@" + bucket)
urls = ds["shards"]
@ -177,15 +184,19 @@ class MultiShardSample(IterableDataset):
urls = [urls]
# urls = [u for url in urls for u in braceexpand.braceexpand(url)]
urls = [
prefix + os.path.join(bucket, u) for url in urls for u in braceexpand.braceexpand(expand(url))
prefix + os.path.join(bucket, u)
for url in urls for u in braceexpand.braceexpand(expand(url))
]
resample = ds.get("resample", -1)
nsample = ds.get("choose", -1)
if nsample > len(urls):
raise ValueError(f"perepoch {nsample} must be no greater than the number of shards")
raise ValueError(
f"perepoch {nsample} must be no greater than the number of shards"
)
if (nsample > 0) and (resample > 0):
raise ValueError("specify only one of perepoch or choose")
entry = MSSource(name=name, urls=urls, perepoch=nsample, resample=resample)
entry = MSSource(
name=name, urls=urls, perepoch=nsample, resample=resample)
self.sources.append(entry)
print(f"# {name} {len(urls)} {nsample}", file=sys.stderr)
@ -203,7 +214,7 @@ class MultiShardSample(IterableDataset):
# sample without replacement
l = list(source.urls)
self.rng.shuffle(l)
l = l[: source.perepoch]
l = l[:source.perepoch]
else:
l = list(source.urls)
result += l
@ -227,12 +238,11 @@ class ResampledShards(IterableDataset):
"""An iterable dataset yielding a list of urls."""
def __init__(
self,
urls,
nshards=sys.maxsize,
worker_seed=None,
deterministic=False,
):
self,
urls,
nshards=sys.maxsize,
worker_seed=None,
deterministic=False, ):
"""Sample shards from the shard list with replacement.
:param urls: a list of URLs as a Python list or brace notation string
@ -252,7 +262,8 @@ class ResampledShards(IterableDataset):
if self.deterministic:
seed = utils.make_seed(self.worker_seed(), self.epoch)
else:
seed = utils.make_seed(self.worker_seed(), self.epoch, os.getpid(), time.time_ns(), os.urandom(4))
seed = utils.make_seed(self.worker_seed(), self.epoch,
os.getpid(), time.time_ns(), os.urandom(4))
if os.environ.get("WDS_SHOW_SEED", "0") == "1":
print(f"# ResampledShards seed {seed}")
self.rng = random.Random(seed)

@ -3,13 +3,12 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# This file is part of the WebDataset library.
# See the LICENSE file for licensing terms (BSD-style).
# Modified from https://github.com/webdataset/webdataset
# Modified from wenet(https://github.com/wenet-e2e/wenet)
"""Low level iteration functions for tar archives."""
import random, re, tarfile
import random
import re
import tarfile
import braceexpand
@ -27,6 +26,7 @@ import numpy as np
AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'])
def base_plus_ext(path):
"""Split off all file extensions.
@ -47,12 +47,8 @@ def valid_sample(sample):
:param sample: sample to be checked
"""
return (
sample is not None
and isinstance(sample, dict)
and len(list(sample.keys())) > 0
and not sample.get("__bad__", False)
)
return (sample is not None and isinstance(sample, dict) and
len(list(sample.keys())) > 0 and not sample.get("__bad__", False))
# FIXME: UNUSED
@ -79,16 +75,16 @@ def url_opener(data, handler=reraise_exception, **kw):
sample.update(stream=stream)
yield sample
except Exception as exn:
exn.args = exn.args + (url,)
exn.args = exn.args + (url, )
if handler(exn):
continue
else:
break
def tar_file_iterator(
fileobj, skip_meta=r"__[^/]*__($|/)", handler=reraise_exception
):
def tar_file_iterator(fileobj,
skip_meta=r"__[^/]*__($|/)",
handler=reraise_exception):
"""Iterate over tar file, yielding filename, content pairs for the given tar stream.
:param fileobj: byte stream suitable for tarfile
@ -103,11 +99,8 @@ def tar_file_iterator(
continue
if fname is None:
continue
if (
"/" not in fname
and fname.startswith(meta_prefix)
and fname.endswith(meta_suffix)
):
if ("/" not in fname and fname.startswith(meta_prefix) and
fname.endswith(meta_suffix)):
# skipping metadata for now
continue
if skip_meta is not None and re.match(skip_meta, fname):
@ -118,8 +111,10 @@ def tar_file_iterator(
assert pos > 0
prefix, postfix = name[:pos], name[pos + 1:]
if postfix == 'wav':
waveform, sample_rate = paddlespeech.audio.load(stream.extractfile(tarinfo), normal=False)
result = dict(fname=prefix, wav=waveform, sample_rate = sample_rate)
waveform, sample_rate = paddlespeech.audio.load(
stream.extractfile(tarinfo), normal=False)
result = dict(
fname=prefix, wav=waveform, sample_rate=sample_rate)
else:
txt = stream.extractfile(tarinfo).read().decode('utf8').strip()
result = dict(fname=prefix, txt=txt)
@ -128,16 +123,17 @@ def tar_file_iterator(
stream.members = []
except Exception as exn:
if hasattr(exn, "args") and len(exn.args) > 0:
exn.args = (exn.args[0] + " @ " + str(fileobj),) + exn.args[1:]
exn.args = (exn.args[0] + " @ " + str(fileobj), ) + exn.args[1:]
if handler(exn):
continue
else:
break
del stream
def tar_file_and_group_iterator(
fileobj, skip_meta=r"__[^/]*__($|/)", handler=reraise_exception
):
def tar_file_and_group_iterator(fileobj,
skip_meta=r"__[^/]*__($|/)",
handler=reraise_exception):
""" Expand a stream of open tar files into a stream of tar file contents.
And groups the file with same prefix
@ -167,8 +163,11 @@ def tar_file_and_group_iterator(
if postfix == 'txt':
example['txt'] = file_obj.read().decode('utf8').strip()
elif postfix in AUDIO_FORMAT_SETS:
waveform, sample_rate = paddlespeech.audio.load(file_obj, normal=False)
waveform = paddle.to_tensor(np.expand_dims(np.array(waveform),0), dtype=paddle.float32)
waveform, sample_rate = paddlespeech.audio.load(
file_obj, normal=False)
waveform = paddle.to_tensor(
np.expand_dims(np.array(waveform), 0),
dtype=paddle.float32)
example['wav'] = waveform
example['sample_rate'] = sample_rate
@ -176,19 +175,21 @@ def tar_file_and_group_iterator(
example[postfix] = file_obj.read()
except Exception as exn:
if hasattr(exn, "args") and len(exn.args) > 0:
exn.args = (exn.args[0] + " @ " + str(fileobj),) + exn.args[1:]
exn.args = (exn.args[0] + " @ " + str(fileobj),
) + exn.args[1:]
if handler(exn):
continue
else:
break
valid = False
# logging.warning('error to parse {}'.format(name))
# logging.warning('error to parse {}'.format(name))
prev_prefix = prefix
if prev_prefix is not None:
example['fname'] = prev_prefix
yield example
stream.close()
def tar_file_expander(data, handler=reraise_exception):
"""Expand a stream of open tar files into a stream of tar file contents.
@ -200,9 +201,8 @@ def tar_file_expander(data, handler=reraise_exception):
assert isinstance(source, dict)
assert "stream" in source
for sample in tar_file_iterator(source["stream"]):
assert (
isinstance(sample, dict) and "data" in sample and "fname" in sample
)
assert (isinstance(sample, dict) and "data" in sample and
"fname" in sample)
sample["__url__"] = url
yield sample
except Exception as exn:
@ -213,8 +213,6 @@ def tar_file_expander(data, handler=reraise_exception):
break
def tar_file_and_group_expander(data, handler=reraise_exception):
"""Expand a stream of open tar files into a stream of tar file contents.
@ -226,9 +224,8 @@ def tar_file_and_group_expander(data, handler=reraise_exception):
assert isinstance(source, dict)
assert "stream" in source
for sample in tar_file_and_group_iterator(source["stream"]):
assert (
isinstance(sample, dict) and "wav" in sample and "txt" in sample and "fname" in sample
)
assert (isinstance(sample, dict) and "wav" in sample and
"txt" in sample and "fname" in sample)
sample["__url__"] = url
yield sample
except Exception as exn:
@ -239,7 +236,11 @@ def tar_file_and_group_expander(data, handler=reraise_exception):
break
def group_by_keys(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None):
def group_by_keys(data,
keys=base_plus_ext,
lcase=True,
suffixes=None,
handler=None):
"""Return function over iterator that groups key, value pairs into samples.
:param keys: function that splits the key into key and extension (base_plus_ext)
@ -254,8 +255,8 @@ def group_by_keys(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=N
print(
prefix,
suffix,
current_sample.keys() if isinstance(current_sample, dict) else None,
)
current_sample.keys()
if isinstance(current_sample, dict) else None, )
if prefix is None:
continue
if lcase:

@ -4,22 +4,23 @@
# This file is part of the WebDataset library.
# See the LICENSE file for licensing terms (BSD-style).
#
# Modified from https://github.com/webdataset/webdataset
"""Miscellaneous utility functions."""
import importlib
import itertools as itt
import os
import re
import sys
from typing import Any, Callable, Iterator, Optional, Union
from typing import Any
from typing import Callable
from typing import Iterator
from typing import Union
from ..utils.log import Logger
logger = Logger(__name__)
def make_seed(*args):
seed = 0
for arg in args:
@ -37,7 +38,7 @@ def identity(x: Any) -> Any:
return x
def safe_eval(s: str, expr: str = "{}"):
def safe_eval(s: str, expr: str="{}"):
"""Evaluate the given expression more safely."""
if re.sub("[^A-Za-z0-9_]", "", s) != s:
raise ValueError(f"safe_eval: illegal characters in: '{s}'")
@ -54,9 +55,9 @@ def lookup_sym(sym: str, modules: list):
return None
def repeatedly0(
loader: Iterator, nepochs: int = sys.maxsize, nbatches: int = sys.maxsize
):
def repeatedly0(loader: Iterator,
nepochs: int=sys.maxsize,
nbatches: int=sys.maxsize):
"""Repeatedly returns batches from a DataLoader."""
for epoch in range(nepochs):
for sample in itt.islice(loader, nbatches):
@ -69,12 +70,11 @@ def guess_batchsize(batch: Union[tuple, list]):
def repeatedly(
source: Iterator,
nepochs: int = None,
nbatches: int = None,
nsamples: int = None,
batchsize: Callable[..., int] = guess_batchsize,
):
source: Iterator,
nepochs: int=None,
nbatches: int=None,
nsamples: int=None,
batchsize: Callable[..., int]=guess_batchsize, ):
"""Repeatedly yield samples from an iterator."""
epoch = 0
batch = 0
@ -93,6 +93,7 @@ def repeatedly(
if nepochs is not None and epoch >= nepochs:
return
def paddle_worker_info(group=None):
"""Return node and worker info for PyTorch and some distributed environments."""
rank = 0
@ -116,7 +117,7 @@ def paddle_worker_info(group=None):
else:
try:
from paddle.io import get_worker_info
worker_info = paddle.io.get_worker_info()
worker_info = get_worker_info()
if worker_info is not None:
worker = worker_info.id
num_workers = worker_info.num_workers
@ -126,6 +127,7 @@ def paddle_worker_info(group=None):
return rank, world_size, worker, num_workers
def paddle_worker_seed(group=None):
"""Compute a distinct, deterministic RNG seed for each worker and node."""
rank, world_size, worker, num_workers = paddle_worker_info(group=group)

@ -5,18 +5,24 @@
# See the LICENSE file for licensing terms (BSD-style).
# Modified from https://github.com/webdataset/webdataset
#
"""Classes and functions for writing tar files and WebDataset files."""
import io, json, pickle, re, tarfile, time
from typing import Any, Callable, Optional, Union
import io
import json
import pickle
import re
import tarfile
import time
from typing import Any
from typing import Callable
from typing import Optional
from typing import Union
import numpy as np
from . import gopen
def imageencoder(image: Any, format: str = "PNG"): # skipcq: PYL-W0622
def imageencoder(image: Any, format: str="PNG"): # skipcq: PYL-W0622
"""Compress an image using PIL and return it as a string.
Can handle float or uint8 images.
@ -67,6 +73,7 @@ def bytestr(data: Any):
return data.encode("ascii")
return str(data).encode("ascii")
def paddle_dumps(data: Any):
"""Dump data into a bytestring using paddle.dumps.
@ -82,6 +89,7 @@ def paddle_dumps(data: Any):
paddle.save(data, stream)
return stream.getvalue()
def numpy_dumps(data: np.ndarray):
"""Dump data into a bytestring using numpy npy format.
@ -139,9 +147,8 @@ def add_handlers(d, keys, value):
def make_handlers():
"""Create a list of handlers for encoding data."""
handlers = {}
add_handlers(
handlers, "cls cls2 class count index inx id", lambda x: str(x).encode("ascii")
)
add_handlers(handlers, "cls cls2 class count index inx id",
lambda x: str(x).encode("ascii"))
add_handlers(handlers, "txt text transcript", lambda x: x.encode("utf-8"))
add_handlers(handlers, "html htm", lambda x: x.encode("utf-8"))
add_handlers(handlers, "pyd pickle", pickle.dumps)
@ -152,7 +159,8 @@ def make_handlers():
add_handlers(handlers, "json jsn", lambda x: json.dumps(x).encode("utf-8"))
add_handlers(handlers, "mp msgpack msg", mp_dumps)
add_handlers(handlers, "cbor", cbor_dumps)
add_handlers(handlers, "jpg jpeg img image", lambda data: imageencoder(data, "jpg"))
add_handlers(handlers, "jpg jpeg img image",
lambda data: imageencoder(data, "jpg"))
add_handlers(handlers, "png", lambda data: imageencoder(data, "png"))
add_handlers(handlers, "pbm", lambda data: imageencoder(data, "pbm"))
add_handlers(handlers, "pgm", lambda data: imageencoder(data, "pgm"))
@ -192,7 +200,8 @@ def encode_based_on_extension(sample: dict, handlers: dict):
:param handlers: handlers for encoding
"""
return {
k: encode_based_on_extension1(v, k, handlers) for k, v in list(sample.items())
k: encode_based_on_extension1(v, k, handlers)
for k, v in list(sample.items())
}
@ -258,15 +267,14 @@ class TarWriter:
"""
def __init__(
self,
fileobj,
user: str = "bigdata",
group: str = "bigdata",
mode: int = 0o0444,
compress: Optional[bool] = None,
encoder: Union[None, bool, Callable] = True,
keep_meta: bool = False,
):
self,
fileobj,
user: str="bigdata",
group: str="bigdata",
mode: int=0o0444,
compress: Optional[bool]=None,
encoder: Union[None, bool, Callable]=True,
keep_meta: bool=False, ):
"""Create a tar writer.
:param fileobj: stream to write data to
@ -330,8 +338,7 @@ class TarWriter:
continue
if not isinstance(v, (bytes, bytearray, memoryview)):
raise ValueError(
f"{k} doesn't map to a bytes after encoding ({type(v)})"
)
f"{k} doesn't map to a bytes after encoding ({type(v)})")
key = obj["__key__"]
for k in sorted(obj.keys()):
if k == "__key__":
@ -349,7 +356,8 @@ class TarWriter:
ti.uname = self.user
ti.gname = self.group
if not isinstance(v, (bytes, bytearray, memoryview)):
raise ValueError(f"converter didn't yield bytes: {k}, {type(v)}")
raise ValueError(
f"converter didn't yield bytes: {k}, {type(v)}")
stream = io.BytesIO(v)
self.tarstream.addfile(ti, stream)
total += ti.size
@ -360,14 +368,13 @@ class ShardWriter:
"""Like TarWriter but splits into multiple shards."""
def __init__(
self,
pattern: str,
maxcount: int = 100000,
maxsize: float = 3e9,
post: Optional[Callable] = None,
start_shard: int = 0,
**kw,
):
self,
pattern: str,
maxcount: int=100000,
maxsize: float=3e9,
post: Optional[Callable]=None,
start_shard: int=0,
**kw, ):
"""Create a ShardWriter.
:param pattern: output file pattern
@ -400,8 +407,7 @@ class ShardWriter:
self.fname,
self.count,
"%.1f GB" % (self.size / 1e9),
self.total,
)
self.total, )
self.shard += 1
stream = open(self.fname, "wb")
self.tarstream = TarWriter(stream, **self.kw)
@ -413,11 +419,8 @@ class ShardWriter:
:param obj: sample to be written
"""
if (
self.tarstream is None
or self.count >= self.maxcount
or self.size >= self.maxsize
):
if (self.tarstream is None or self.count >= self.maxcount or
self.size >= self.maxsize):
self.next_stream()
size = self.tarstream.write(obj)
self.count += 1

@ -17,6 +17,7 @@ from typing import Union
import sentencepiece as spm
from ..utils.log import Logger
from .utility import BLANK
from .utility import EOS
from .utility import load_dict
@ -24,7 +25,6 @@ from .utility import MASKCTC
from .utility import SOS
from .utility import SPACE
from .utility import UNK
from ..utils.log import Logger
logger = Logger(__name__)

@ -12,15 +12,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
import io
import os
import h5py
import librosa
import numpy
import numpy as np
import scipy
import soundfile
import io
import os
import h5py
import numpy as np
class SoundHDF5File():
"""Collecting sound files to a HDF5 file
@ -109,6 +110,7 @@ class SoundHDF5File():
def close(self):
self.file.close()
class SpeedPerturbation():
"""SpeedPerturbation
@ -558,4 +560,3 @@ class RIRConvolve():
[scipy.convolve(x, r, mode="same") for r in rir], axis=-1)
else:
return scipy.convolve(x, rir, mode="same")

@ -14,6 +14,7 @@
# Modified from espnet(https://github.com/espnet/espnet)
"""Spec Augment module for preprocessing i.e., data augmentation"""
import random
import numpy
from PIL import Image

@ -191,7 +191,7 @@ class BaseExecutor(ABC):
line = line.strip()
if not line:
continue
k, v = line.split() # space or \t
k, v = line.split() # space or \t
job_contents[k] = v
return job_contents

@ -114,6 +114,7 @@ if not hasattr(paddle.Tensor, 'new_full'):
paddle.Tensor.new_full = new_full
paddle.static.Variable.new_full = new_full
def contiguous(xs: paddle.Tensor) -> paddle.Tensor:
return xs

@ -20,8 +20,8 @@ import paddle
import soundfile
from yacs.config import CfgNode
from paddlespeech.audio.transform.transformation import Transformation
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.io.collator import SpeechCollator
from paddlespeech.s2t.models.ds2 import DeepSpeech2Model
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils import mp_tools
@ -38,24 +38,24 @@ class DeepSpeech2Tester_hub():
self.args = args
self.config = config
self.audio_file = args.audio_file
self.collate_fn_test = SpeechCollator.from_config(config)
self._text_featurizer = TextFeaturizer(
unit_type=config.unit_type, vocab=None)
def compute_result_transcripts(self, audio, audio_len, vocab_list, cfg):
result_transcripts = self.model.decode(
audio,
audio_len,
vocab_list,
decoding_method=cfg.decoding_method,
lang_model_path=cfg.lang_model_path,
beam_alpha=cfg.alpha,
beam_beta=cfg.beta,
beam_size=cfg.beam_size,
cutoff_prob=cfg.cutoff_prob,
cutoff_top_n=cfg.cutoff_top_n,
num_processes=cfg.num_proc_bsearch)
self.preprocess_conf = config.preprocess_config
self.preprocess_args = {"train": False}
self.preprocessing = Transformation(self.preprocess_conf)
self.text_feature = TextFeaturizer(
unit_type=config.unit_type,
vocab=config.vocab_filepath,
spm_model_prefix=config.spm_model_prefix)
paddle.set_device('gpu' if self.args.ngpu > 0 else 'cpu')
def compute_result_transcripts(self, audio, audio_len, vocab_list, cfg):
decode_batch_size = cfg.decode_batch_size
self.model.decoder.init_decoder(
decode_batch_size, vocab_list, cfg.decoding_method,
cfg.lang_model_path, cfg.alpha, cfg.beta, cfg.beam_size,
cfg.cutoff_prob, cfg.cutoff_top_n, cfg.num_proc_bsearch)
result_transcripts = self.model.decode(audio, audio_len)
return result_transcripts
@mp_tools.rank_zero_only
@ -64,16 +64,23 @@ class DeepSpeech2Tester_hub():
self.model.eval()
cfg = self.config
audio_file = self.audio_file
collate_fn_test = self.collate_fn_test
audio, _ = collate_fn_test.process_utterance(
audio_file=audio_file, transcript=" ")
audio_len = audio.shape[0]
audio = paddle.to_tensor(audio, dtype='float32')
audio_len = paddle.to_tensor(audio_len)
audio = paddle.unsqueeze(audio, axis=0)
vocab_list = collate_fn_test.vocab_list
audio, sample_rate = soundfile.read(
self.audio_file, dtype="int16", always_2d=True)
audio = audio[:, 0]
logger.info(f"audio shape: {audio.shape}")
# fbank
feat = self.preprocessing(audio, **self.preprocess_args)
logger.info(f"feat shape: {feat.shape}")
audio_len = paddle.to_tensor(feat.shape[0])
audio = paddle.to_tensor(feat, dtype='float32').unsqueeze(axis=0)
result_transcripts = self.compute_result_transcripts(
audio, audio_len, vocab_list, cfg.decode)
audio, audio_len, self.text_feature.vocab_list, cfg.decode)
logger.info("result_transcripts: " + result_transcripts[0])
def run_test(self):
@ -109,11 +116,9 @@ class DeepSpeech2Tester_hub():
def setup_model(self):
config = self.config.clone()
with UpdateConfig(config):
config.input_dim = self.collate_fn_test.feature_size
config.output_dim = self.collate_fn_test.vocab_size
config.input_dim = config.feat_dim
config.output_dim = self.text_feature.vocab_size
model = DeepSpeech2Model.from_config(config)
self.model = model
def setup_checkpointer(self):

@ -25,8 +25,6 @@ import paddle
from paddle import distributed as dist
from paddlespeech.s2t.frontend.featurizer import TextFeaturizer
from paddlespeech.s2t.io.dataloader import BatchDataLoader
from paddlespeech.s2t.io.dataloader import StreamDataLoader
from paddlespeech.s2t.io.dataloader import DataLoaderFactory
from paddlespeech.s2t.models.u2 import U2Model
from paddlespeech.s2t.training.optimizer import OptimizerFactory
@ -109,7 +107,8 @@ class U2Trainer(Trainer):
def valid(self):
self.model.eval()
if not self.use_streamdata:
logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}")
logger.info(
f"Valid Total Examples: {len(self.valid_loader.dataset)}")
valid_losses = defaultdict(list)
num_seen_utts = 1
total_loss = 0.0
@ -136,7 +135,8 @@ class U2Trainer(Trainer):
msg += "epoch: {}, ".format(self.epoch)
msg += "step: {}, ".format(self.iteration)
if not self.use_streamdata:
msg += "batch: {}/{}, ".format(i + 1, len(self.valid_loader))
msg += "batch: {}/{}, ".format(i + 1,
len(self.valid_loader))
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in valid_dump.items())
logger.info(msg)
@ -157,7 +157,8 @@ class U2Trainer(Trainer):
self.before_train()
if not self.use_streamdata:
logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
logger.info(
f"Train Total Examples: {len(self.train_loader.dataset)}")
while self.epoch < self.config.n_epoch:
with Timer("Epoch-Train Time Cost: {}"):
self.model.train()
@ -225,14 +226,18 @@ class U2Trainer(Trainer):
config = self.config.clone()
self.use_streamdata = config.get("use_stream_data", False)
if self.train:
self.train_loader = DataLoaderFactory.get_dataloader('train', config, self.args)
self.valid_loader = DataLoaderFactory.get_dataloader('valid', config, self.args)
self.train_loader = DataLoaderFactory.get_dataloader(
'train', config, self.args)
self.valid_loader = DataLoaderFactory.get_dataloader(
'valid', config, self.args)
logger.info("Setup train/valid Dataloader!")
else:
decode_batch_size = config.get('decode', dict()).get(
'decode_batch_size', 1)
self.test_loader = DataLoaderFactory.get_dataloader('test', config, self.args)
self.align_loader = DataLoaderFactory.get_dataloader('align', config, self.args)
self.test_loader = DataLoaderFactory.get_dataloader('test', config,
self.args)
self.align_loader = DataLoaderFactory.get_dataloader(
'align', config, self.args)
logger.info("Setup test/align Dataloader!")
def setup_model(self):

@ -105,7 +105,8 @@ class U2Trainer(Trainer):
def valid(self):
self.model.eval()
if not self.use_streamdata:
logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}")
logger.info(
f"Valid Total Examples: {len(self.valid_loader.dataset)}")
valid_losses = defaultdict(list)
num_seen_utts = 1
total_loss = 0.0
@ -133,7 +134,8 @@ class U2Trainer(Trainer):
msg += "epoch: {}, ".format(self.epoch)
msg += "step: {}, ".format(self.iteration)
if not self.use_streamdata:
msg += "batch: {}/{}, ".format(i + 1, len(self.valid_loader))
msg += "batch: {}/{}, ".format(i + 1,
len(self.valid_loader))
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in valid_dump.items())
logger.info(msg)
@ -153,7 +155,8 @@ class U2Trainer(Trainer):
self.before_train()
if not self.use_streamdata:
logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
logger.info(
f"Train Total Examples: {len(self.train_loader.dataset)}")
while self.epoch < self.config.n_epoch:
with Timer("Epoch-Train Time Cost: {}"):
self.model.train()
@ -165,8 +168,8 @@ class U2Trainer(Trainer):
msg += "epoch: {}, ".format(self.epoch)
msg += "step: {}, ".format(self.iteration)
if not self.use_streamdata:
msg += "batch : {}/{}, ".format(batch_index + 1,
len(self.train_loader))
msg += "batch : {}/{}, ".format(
batch_index + 1, len(self.train_loader))
msg += "lr: {:>.8f}, ".format(self.lr_scheduler())
msg += "data time: {:>.3f}s, ".format(dataload_time)
self.train_batch(batch_index, batch, msg)
@ -204,21 +207,24 @@ class U2Trainer(Trainer):
self.use_streamdata = config.get("use_stream_data", False)
if self.train:
config = self.config.clone()
self.train_loader = DataLoaderFactory.get_dataloader('train', config, self.args)
self.train_loader = DataLoaderFactory.get_dataloader(
'train', config, self.args)
config = self.config.clone()
config['preprocess_config'] = None
self.valid_loader = DataLoaderFactory.get_dataloader('valid', config, self.args)
self.valid_loader = DataLoaderFactory.get_dataloader(
'valid', config, self.args)
logger.info("Setup train/valid Dataloader!")
else:
config = self.config.clone()
config['preprocess_config'] = None
self.test_loader = DataLoaderFactory.get_dataloader('test', config, self.args)
self.test_loader = DataLoaderFactory.get_dataloader('test', config,
self.args)
config = self.config.clone()
config['preprocess_config'] = None
self.align_loader = DataLoaderFactory.get_dataloader('align', config, self.args)
self.align_loader = DataLoaderFactory.get_dataloader(
'align', config, self.args)
logger.info("Setup test/align Dataloader!")
def setup_model(self):
config = self.config

@ -121,7 +121,8 @@ class U2STTrainer(Trainer):
def valid(self):
self.model.eval()
if not self.use_streamdata:
logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}")
logger.info(
f"Valid Total Examples: {len(self.valid_loader.dataset)}")
valid_losses = defaultdict(list)
num_seen_utts = 1
total_loss = 0.0
@ -155,7 +156,8 @@ class U2STTrainer(Trainer):
msg += "epoch: {}, ".format(self.epoch)
msg += "step: {}, ".format(self.iteration)
if not self.use_streamdata:
msg += "batch: {}/{}, ".format(i + 1, len(self.valid_loader))
msg += "batch: {}/{}, ".format(i + 1,
len(self.valid_loader))
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in valid_dump.items())
logger.info(msg)
@ -175,7 +177,8 @@ class U2STTrainer(Trainer):
self.before_train()
if not self.use_streamdata:
logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
logger.info(
f"Train Total Examples: {len(self.train_loader.dataset)}")
while self.epoch < self.config.n_epoch:
with Timer("Epoch-Train Time Cost: {}"):
self.model.train()
@ -248,14 +251,16 @@ class U2STTrainer(Trainer):
config['load_transcript'] = load_transcript
self.use_streamdata = config.get("use_stream_data", False)
if self.train:
self.train_loader = DataLoaderFactory.get_dataloader('train', config, self.args)
self.valid_loader = DataLoaderFactory.get_dataloader('valid', config, self.args)
self.train_loader = DataLoaderFactory.get_dataloader(
'train', config, self.args)
self.valid_loader = DataLoaderFactory.get_dataloader(
'valid', config, self.args)
logger.info("Setup train/valid Dataloader!")
else:
self.test_loader = DataLoaderFactory.get_dataloader('test', config, self.args)
self.test_loader = DataLoaderFactory.get_dataloader('test', config,
self.args)
logger.info("Setup test Dataloader!")
def setup_model(self):
config = self.config
model_conf = config

@ -22,17 +22,16 @@ import paddle
from paddle.io import BatchSampler
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from yacs.config import CfgNode
import paddlespeech.audio.streamdata as streamdata
from paddlespeech.audio.text.text_featurizer import TextFeaturizer
from paddlespeech.s2t.io.batchfy import make_batchset
from paddlespeech.s2t.io.converter import CustomConverter
from paddlespeech.s2t.io.dataset import TransformDataset
from paddlespeech.s2t.io.reader import LoadInputsAndTargets
from paddlespeech.s2t.utils.log import Log
import paddlespeech.audio.streamdata as streamdata
from paddlespeech.audio.text.text_featurizer import TextFeaturizer
from yacs.config import CfgNode
__all__ = ["BatchDataLoader", "StreamDataLoader"]
logger = Log(__name__).getlog()
@ -61,6 +60,7 @@ def batch_collate(x):
"""
return x[0]
def read_preprocess_cfg(preprocess_conf_file):
augment_conf = dict()
preprocess_cfg = CfgNode(new_allowed=True)
@ -82,7 +82,8 @@ def read_preprocess_cfg(preprocess_conf_file):
augment_conf['num_t_mask'] = process['n_mask']
augment_conf['t_inplace'] = process['inplace']
augment_conf['t_replace_with_zero'] = process['replace_with_zero']
return augment_conf
return augment_conf
class StreamDataLoader():
def __init__(self,
@ -95,12 +96,12 @@ class StreamDataLoader():
frame_length=25,
frame_shift=10,
dither=0.0,
minlen_in: float=0.0,
minlen_in: float=0.0,
maxlen_in: float=float('inf'),
minlen_out: float=0.0,
maxlen_out: float=float('inf'),
resample_rate: int=16000,
shuffle_size: int=10000,
shuffle_size: int=10000,
sort_size: int=1000,
n_iter_processes: int=1,
prefetch_factor: int=2,
@ -116,11 +117,11 @@ class StreamDataLoader():
text_featurizer = TextFeaturizer(unit_type, vocab_filepath)
symbol_table = text_featurizer.vocab_dict
self.feat_dim = num_mel_bins
self.vocab_size = text_featurizer.vocab_size
self.feat_dim = num_mel_bins
self.vocab_size = text_featurizer.vocab_size
augment_conf = read_preprocess_cfg(preprocess_conf)
# The list of shard
shardlist = []
with open(manifest_file, "r") as f:
@ -128,58 +129,68 @@ class StreamDataLoader():
shardlist.append(line.strip())
world_size = 1
try:
world_size = paddle.distributed.get_world_size()
world_size = paddle.distributed.get_world_size()
except Exception as e:
logger.warninig(e)
logger.warninig("can not get world_size using paddle.distributed.get_world_size(), use world_size=1")
assert(len(shardlist) >= world_size, "the length of shard list should >= number of gpus/xpus/...")
logger.warninig(
"can not get world_size using paddle.distributed.get_world_size(), use world_size=1"
)
assert len(shardlist) >= world_size, \
"the length of shard list should >= number of gpus/xpus/..."
update_n_iter_processes = int(max(min(len(shardlist)/world_size - 1, self.n_iter_processes), 0))
update_n_iter_processes = int(
max(min(len(shardlist) / world_size - 1, self.n_iter_processes), 0))
logger.info(f"update_n_iter_processes {update_n_iter_processes}")
if update_n_iter_processes != self.n_iter_processes:
self.n_iter_processes = update_n_iter_processes
self.n_iter_processes = update_n_iter_processes
logger.info(f"change nun_workers to {self.n_iter_processes}")
if self.dist_sampler:
base_dataset = streamdata.DataPipeline(
streamdata.SimpleShardList(shardlist),
streamdata.split_by_node if train_mode else streamdata.placeholder(),
streamdata.SimpleShardList(shardlist), streamdata.split_by_node
if train_mode else streamdata.placeholder(),
streamdata.split_by_worker,
streamdata.tarfile_to_samples(streamdata.reraise_exception)
)
streamdata.tarfile_to_samples(streamdata.reraise_exception))
else:
base_dataset = streamdata.DataPipeline(
streamdata.SimpleShardList(shardlist),
streamdata.split_by_worker,
streamdata.tarfile_to_samples(streamdata.reraise_exception)
)
streamdata.tarfile_to_samples(streamdata.reraise_exception))
self.dataset = base_dataset.append_list(
streamdata.audio_tokenize(symbol_table),
streamdata.audio_data_filter(frame_shift=frame_shift, max_length=maxlen_in, min_length=minlen_in, token_max_length=maxlen_out, token_min_length=minlen_out),
streamdata.audio_data_filter(
frame_shift=frame_shift,
max_length=maxlen_in,
min_length=minlen_in,
token_max_length=maxlen_out,
token_min_length=minlen_out),
streamdata.audio_resample(resample_rate=resample_rate),
streamdata.audio_compute_fbank(num_mel_bins=num_mel_bins, frame_length=frame_length, frame_shift=frame_shift, dither=dither),
streamdata.audio_spec_aug(**augment_conf) if train_mode else streamdata.placeholder(), # num_t_mask=2, num_f_mask=2, max_t=40, max_f=30, max_w=80)
streamdata.audio_compute_fbank(
num_mel_bins=num_mel_bins,
frame_length=frame_length,
frame_shift=frame_shift,
dither=dither),
streamdata.audio_spec_aug(**augment_conf)
if train_mode else streamdata.placeholder(
), # num_t_mask=2, num_f_mask=2, max_t=40, max_f=30, max_w=80)
streamdata.shuffle(shuffle_size),
streamdata.sort(sort_size=sort_size),
streamdata.batched(batch_size),
streamdata.audio_padding(),
streamdata.audio_cmvn(cmvn_file)
)
streamdata.audio_cmvn(cmvn_file))
if paddle.__version__ >= '2.3.2':
self.loader = streamdata.WebLoader(
self.dataset,
num_workers=self.n_iter_processes,
prefetch_factor = self.prefetch_factor,
batch_size=None
)
self.dataset,
num_workers=self.n_iter_processes,
prefetch_factor=self.prefetch_factor,
batch_size=None)
else:
self.loader = streamdata.WebLoader(
self.dataset,
num_workers=self.n_iter_processes,
batch_size=None
)
self.dataset,
num_workers=self.n_iter_processes,
batch_size=None)
def __iter__(self):
return self.loader.__iter__()
@ -188,7 +199,9 @@ class StreamDataLoader():
return self.__iter__()
def __len__(self):
logger.info("Stream dataloader does not support calculate the length of the dataset")
logger.info(
"Stream dataloader does not support calculate the length of the dataset"
)
return -1
@ -347,7 +360,7 @@ class DataLoaderFactory():
config['train_mode'] = True
elif mode == 'valid':
config['manifest'] = config.dev_manifest
config['train_mode'] = False
config['train_mode'] = False
elif model == 'test' or mode == 'align':
config['manifest'] = config.test_manifest
config['train_mode'] = False
@ -358,30 +371,31 @@ class DataLoaderFactory():
config['maxlen_out'] = float('inf')
config['dist_sampler'] = False
else:
raise KeyError("not valid mode type!!, please input one of 'train, valid, test, align'")
return StreamDataLoader(
manifest_file=config.manifest,
train_mode=config.train_mode,
unit_type=config.unit_type,
preprocess_conf=config.preprocess_config,
batch_size=config.batch_size,
num_mel_bins=config.feat_dim,
frame_length=config.window_ms,
frame_shift=config.stride_ms,
dither=config.dither,
minlen_in=config.minlen_in,
maxlen_in=config.maxlen_in,
minlen_out=config.minlen_out,
maxlen_out=config.maxlen_out,
resample_rate=config.resample_rate,
shuffle_size=config.shuffle_size,
sort_size=config.sort_size,
n_iter_processes=config.num_workers,
prefetch_factor=config.prefetch_factor,
dist_sampler=config.dist_sampler,
cmvn_file=config.cmvn_file,
vocab_filepath=config.vocab_filepath,
raise KeyError(
"not valid mode type!!, please input one of 'train, valid, test, align'"
)
return StreamDataLoader(
manifest_file=config.manifest,
train_mode=config.train_mode,
unit_type=config.unit_type,
preprocess_conf=config.preprocess_config,
batch_size=config.batch_size,
num_mel_bins=config.feat_dim,
frame_length=config.window_ms,
frame_shift=config.stride_ms,
dither=config.dither,
minlen_in=config.minlen_in,
maxlen_in=config.maxlen_in,
minlen_out=config.minlen_out,
maxlen_out=config.maxlen_out,
resample_rate=config.resample_rate,
shuffle_size=config.shuffle_size,
sort_size=config.sort_size,
n_iter_processes=config.num_workers,
prefetch_factor=config.prefetch_factor,
dist_sampler=config.dist_sampler,
cmvn_file=config.cmvn_file,
vocab_filepath=config.vocab_filepath, )
else:
if mode == 'train':
config['manifest'] = config.train_manifest
@ -411,7 +425,7 @@ class DataLoaderFactory():
config['train_mode'] = False
config['sortagrad'] = False
config['batch_size'] = config.get('decode', dict()).get(
'decode_batch_size', 1)
'decode_batch_size', 1)
config['maxlen_in'] = float('inf')
config['maxlen_out'] = float('inf')
config['minibatches'] = 0
@ -427,8 +441,10 @@ class DataLoaderFactory():
config['dist_sampler'] = False
config['shortest_first'] = False
else:
raise KeyError("not valid mode type!!, please input one of 'train, valid, test, align'")
raise KeyError(
"not valid mode type!!, please input one of 'train, valid, test, align'"
)
return BatchDataLoader(
json_file=config.manifest,
train_mode=config.train_mode,
@ -450,4 +466,3 @@ class DataLoaderFactory():
num_encs=config.num_encs,
dist_sampler=config.dist_sampler,
shortest_first=config.shortest_first)

@ -605,8 +605,8 @@ class U2BaseModel(ASRInterface, nn.Layer):
xs: paddle.Tensor,
offset: int,
required_cache_size: int,
att_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
cnn_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
att_cache: paddle.Tensor, # paddle.zeros([0, 0, 0, 0])
cnn_cache: paddle.Tensor, # paddle.zeros([0, 0, 0, 0])
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
""" Export interface for c++ call, give input chunk xs, and return
output from time 0 to current chunk.

@ -18,7 +18,6 @@ Unified Streaming and Non-streaming Two-pass End-to-end Model for Speech Recogni
"""
import time
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
@ -26,6 +25,8 @@ import paddle
from paddle import jit
from paddle import nn
from paddlespeech.audio.utils.tensor_utils import add_sos_eos
from paddlespeech.audio.utils.tensor_utils import th_accuracy
from paddlespeech.s2t.frontend.utility import IGNORE_ID
from paddlespeech.s2t.frontend.utility import load_cmvn
from paddlespeech.s2t.modules.cmvn import GlobalCMVN
@ -38,8 +39,6 @@ from paddlespeech.s2t.modules.mask import subsequent_mask
from paddlespeech.s2t.utils import checkpoint
from paddlespeech.s2t.utils import layer_tools
from paddlespeech.s2t.utils.log import Log
from paddlespeech.audio.utils.tensor_utils import add_sos_eos
from paddlespeech.audio.utils.tensor_utils import th_accuracy
from paddlespeech.s2t.utils.utility import UpdateConfig
__all__ = ["U2STModel", "U2STInferModel"]
@ -401,8 +400,8 @@ class U2STBaseModel(nn.Layer):
xs: paddle.Tensor,
offset: int,
required_cache_size: int,
att_cache: paddle.Tensor = paddle.zeros([0, 0, 0, 0]),
cnn_cache: paddle.Tensor = paddle.zeros([0, 0, 0, 0]),
att_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
cnn_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
""" Export interface for c++ call, give input chunk xs, and return
output from time 0 to current chunk.
@ -435,8 +434,8 @@ class U2STBaseModel(nn.Layer):
paddle.Tensor: new conformer cnn cache required for next chunk, with
same shape as the original cnn_cache.
"""
return self.encoder.forward_chunk(
xs, offset, required_cache_size, att_cache, cnn_cache)
return self.encoder.forward_chunk(xs, offset, required_cache_size,
att_cache, cnn_cache)
# @jit.to_static
def ctc_activation(self, xs: paddle.Tensor) -> paddle.Tensor:

@ -11,9 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
from paddle import nn
import math
"""
To align the initializer between paddle and torch,
the API below are set defalut initializer with priority higger than global initializer.
@ -81,10 +82,18 @@ class Linear(nn.Linear):
name=None):
if weight_attr is None:
if global_init_type == "kaiming_uniform":
weight_attr = paddle.ParamAttr(initializer=nn.initializer.KaimingUniform(fan_in=None, negative_slope=math.sqrt(5), nonlinearity='leaky_relu'))
weight_attr = paddle.ParamAttr(
initializer=nn.initializer.KaimingUniform(
fan_in=None,
negative_slope=math.sqrt(5),
nonlinearity='leaky_relu'))
if bias_attr is None:
if global_init_type == "kaiming_uniform":
bias_attr = paddle.ParamAttr(initializer=nn.initializer.KaimingUniform(fan_in=None, negative_slope=math.sqrt(5), nonlinearity='leaky_relu'))
bias_attr = paddle.ParamAttr(
initializer=nn.initializer.KaimingUniform(
fan_in=None,
negative_slope=math.sqrt(5),
nonlinearity='leaky_relu'))
super(Linear, self).__init__(in_features, out_features, weight_attr,
bias_attr, name)
@ -104,10 +113,18 @@ class Conv1D(nn.Conv1D):
data_format='NCL'):
if weight_attr is None:
if global_init_type == "kaiming_uniform":
weight_attr = paddle.ParamAttr(initializer=nn.initializer.KaimingUniform(fan_in=None, negative_slope=math.sqrt(5), nonlinearity='leaky_relu'))
weight_attr = paddle.ParamAttr(
initializer=nn.initializer.KaimingUniform(
fan_in=None,
negative_slope=math.sqrt(5),
nonlinearity='leaky_relu'))
if bias_attr is None:
if global_init_type == "kaiming_uniform":
bias_attr = paddle.ParamAttr(initializer=nn.initializer.KaimingUniform(fan_in=None, negative_slope=math.sqrt(5), nonlinearity='leaky_relu'))
bias_attr = paddle.ParamAttr(
initializer=nn.initializer.KaimingUniform(
fan_in=None,
negative_slope=math.sqrt(5),
nonlinearity='leaky_relu'))
super(Conv1D, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
groups, padding_mode, weight_attr, bias_attr, data_format)
@ -128,10 +145,18 @@ class Conv2D(nn.Conv2D):
data_format='NCHW'):
if weight_attr is None:
if global_init_type == "kaiming_uniform":
weight_attr = paddle.ParamAttr(initializer=nn.initializer.KaimingUniform(fan_in=None, negative_slope=math.sqrt(5), nonlinearity='leaky_relu'))
weight_attr = paddle.ParamAttr(
initializer=nn.initializer.KaimingUniform(
fan_in=None,
negative_slope=math.sqrt(5),
nonlinearity='leaky_relu'))
if bias_attr is None:
if global_init_type == "kaiming_uniform":
bias_attr = paddle.ParamAttr(initializer=nn.initializer.KaimingUniform(fan_in=None, negative_slope=math.sqrt(5), nonlinearity='leaky_relu'))
bias_attr = paddle.ParamAttr(
initializer=nn.initializer.KaimingUniform(
fan_in=None,
negative_slope=math.sqrt(5),
nonlinearity='leaky_relu'))
super(Conv2D, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
groups, padding_mode, weight_attr, bias_attr, data_format)

@ -15,7 +15,6 @@
# Modified from wenet(https://github.com/wenet-e2e/wenet)
"""Multi-Head Attention layer definition."""
import math
from typing import Optional
from typing import Tuple
import paddle
@ -83,11 +82,12 @@ class MultiHeadedAttention(nn.Layer):
return q, k, v
def forward_attention(self,
value: paddle.Tensor,
def forward_attention(
self,
value: paddle.Tensor,
scores: paddle.Tensor,
mask: paddle.Tensor = paddle.ones([0, 0, 0], dtype=paddle.bool),
) -> paddle.Tensor:
mask: paddle.Tensor, # paddle.ones([0, 0, 0], dtype=paddle.bool)
) -> paddle.Tensor:
"""Compute attention context vector.
Args:
value (paddle.Tensor): Transformed value, size
@ -108,7 +108,7 @@ class MultiHeadedAttention(nn.Layer):
# When will `if mask.size(2) > 0` be False?
# 1. onnx(16/-1, -1/-1, 16/0)
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
if paddle.shape(mask)[2] > 0: # time2 > 0
if paddle.shape(mask)[2] > 0: # time2 > 0
mask = mask.unsqueeze(1).equal(0) # (batch, 1, *, time2)
# for last chunk, time2 might be larger than scores.size(-1)
mask = mask[:, :, :, :paddle.shape(scores)[-1]]
@ -127,14 +127,15 @@ class MultiHeadedAttention(nn.Layer):
return self.linear_out(x) # (batch, time1, d_model)
def forward(self,
query: paddle.Tensor,
key: paddle.Tensor,
value: paddle.Tensor,
mask: paddle.Tensor = paddle.ones([0,0,0], dtype=paddle.bool),
pos_emb: paddle.Tensor = paddle.empty([0]),
cache: paddle.Tensor = paddle.zeros([0,0,0,0])
) -> Tuple[paddle.Tensor, paddle.Tensor]:
def forward(
self,
query: paddle.Tensor,
key: paddle.Tensor,
value: paddle.Tensor,
mask: paddle.Tensor, # paddle.ones([0,0,0], dtype=paddle.bool)
pos_emb: paddle.Tensor, # paddle.empty([0])
cache: paddle.Tensor # paddle.zeros([0,0,0,0])
) -> Tuple[paddle.Tensor, paddle.Tensor]:
"""Compute scaled dot product attention.
Args:
query (paddle.Tensor): Query tensor (#batch, time1, size).
@ -243,14 +244,15 @@ class RelPositionMultiHeadedAttention(MultiHeadedAttention):
return x
def forward(self,
query: paddle.Tensor,
key: paddle.Tensor,
value: paddle.Tensor,
mask: paddle.Tensor = paddle.ones([0,0,0], dtype=paddle.bool),
pos_emb: paddle.Tensor = paddle.empty([0]),
cache: paddle.Tensor = paddle.zeros([0,0,0,0])
) -> Tuple[paddle.Tensor, paddle.Tensor]:
def forward(
self,
query: paddle.Tensor,
key: paddle.Tensor,
value: paddle.Tensor,
mask: paddle.Tensor, # paddle.ones([0,0,0], dtype=paddle.bool)
pos_emb: paddle.Tensor, # paddle.empty([0])
cache: paddle.Tensor # paddle.zeros([0,0,0,0])
) -> Tuple[paddle.Tensor, paddle.Tensor]:
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
query (paddle.Tensor): Query tensor (#batch, time1, size).

@ -14,7 +14,6 @@
# limitations under the License.
# Modified from wenet(https://github.com/wenet-e2e/wenet)
"""ConvolutionModule definition."""
from typing import Optional
from typing import Tuple
import paddle
@ -106,11 +105,12 @@ class ConvolutionModule(nn.Layer):
)
self.activation = activation
def forward(self,
x: paddle.Tensor,
mask_pad: paddle.Tensor= paddle.ones([0,0,0], dtype=paddle.bool),
cache: paddle.Tensor= paddle.zeros([0,0,0]),
) -> Tuple[paddle.Tensor, paddle.Tensor]:
def forward(
self,
x: paddle.Tensor,
mask_pad: paddle.Tensor, # paddle.ones([0,0,0], dtype=paddle.bool)
cache: paddle.Tensor # paddle.zeros([0,0,0,0])
) -> Tuple[paddle.Tensor, paddle.Tensor]:
"""Compute convolution module.
Args:
x (paddle.Tensor): Input tensor (#batch, time, channels).
@ -127,11 +127,11 @@ class ConvolutionModule(nn.Layer):
x = x.transpose([0, 2, 1]) # [B, C, T]
# mask batch padding
if paddle.shape(mask_pad)[2] > 0: # time > 0
if paddle.shape(mask_pad)[2] > 0: # time > 0
x = x.masked_fill(mask_pad, 0.0)
if self.lorder > 0:
if paddle.shape(cache)[2] == 0: # cache_t == 0
if paddle.shape(cache)[2] == 0: # cache_t == 0
x = nn.functional.pad(
x, [self.lorder, 0], 'constant', 0.0, data_format='NCL')
else:
@ -161,7 +161,7 @@ class ConvolutionModule(nn.Layer):
x = self.pointwise_conv2(x)
# mask batch padding
if paddle.shape(mask_pad)[2] > 0: # time > 0
if paddle.shape(mask_pad)[2] > 0: # time > 0
x = x.masked_fill(mask_pad, 0.0)
x = x.transpose([0, 2, 1]) # [B, T, C]

@ -121,11 +121,16 @@ class DecoderLayer(nn.Layer):
if self.concat_after:
tgt_concat = paddle.cat(
(tgt_q, self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0]), dim=-1)
(tgt_q, self.self_attn(tgt_q, tgt, tgt, tgt_q_mask,
paddle.empty([0]),
paddle.zeros([0, 0, 0, 0]))[0]),
dim=-1)
x = residual + self.concat_linear1(tgt_concat)
else:
x = residual + self.dropout(
self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
self.self_attn(tgt_q, tgt, tgt, tgt_q_mask,
paddle.empty([0]), paddle.zeros([0, 0, 0, 0]))[
0])
if not self.normalize_before:
x = self.norm1(x)
@ -134,11 +139,15 @@ class DecoderLayer(nn.Layer):
x = self.norm2(x)
if self.concat_after:
x_concat = paddle.cat(
(x, self.src_attn(x, memory, memory, memory_mask)[0]), dim=-1)
(x, self.src_attn(x, memory, memory, memory_mask,
paddle.empty([0]),
paddle.zeros([0, 0, 0, 0]))[0]),
dim=-1)
x = residual + self.concat_linear2(x_concat)
else:
x = residual + self.dropout(
self.src_attn(x, memory, memory, memory_mask)[0])
self.src_attn(x, memory, memory, memory_mask,
paddle.empty([0]), paddle.zeros([0, 0, 0, 0]))[0])
if not self.normalize_before:
x = self.norm2(x)

@ -14,8 +14,6 @@
# limitations under the License.
# Modified from wenet(https://github.com/wenet-e2e/wenet)
"""Encoder definition."""
from typing import List
from typing import Optional
from typing import Tuple
import paddle
@ -177,7 +175,9 @@ class BaseEncoder(nn.Layer):
decoding_chunk_size, self.static_chunk_size,
num_decoding_left_chunks)
for layer in self.encoders:
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad,
paddle.zeros([0, 0, 0, 0]),
paddle.zeros([0, 0, 0, 0]))
if self.normalize_before:
xs = self.after_norm(xs)
# Here we assume the mask is not changed in encoder layers, so just
@ -190,9 +190,9 @@ class BaseEncoder(nn.Layer):
xs: paddle.Tensor,
offset: int,
required_cache_size: int,
att_cache: paddle.Tensor = paddle.zeros([0,0,0,0]),
cnn_cache: paddle.Tensor = paddle.zeros([0,0,0,0]),
att_mask: paddle.Tensor = paddle.ones([0,0,0], dtype=paddle.bool),
att_cache: paddle.Tensor, # paddle.zeros([0,0,0,0])
cnn_cache: paddle.Tensor, # paddle.zeros([0,0,0,0]),
att_mask: paddle.Tensor, # paddle.ones([0,0,0], dtype=paddle.bool)
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
""" Forward just one chunk
Args:
@ -227,7 +227,7 @@ class BaseEncoder(nn.Layer):
xs = self.global_cmvn(xs)
# before embed, xs=(B, T, D1), pos_emb=(B=1, T, D)
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset=offset)
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset=offset)
# after embed, xs=(B=1, chunk_size, hidden-dim)
elayers = paddle.shape(att_cache)[0]
@ -252,14 +252,17 @@ class BaseEncoder(nn.Layer):
# att_cache[i:i+1] = (1, head, cache_t1, d_k*2)
# cnn_cache[i:i+1] = (1, B=1, hidden-dim, cache_t2)
xs, _, new_att_cache, new_cnn_cache = layer(
xs, att_mask, pos_emb,
att_cache=att_cache[i:i+1] if elayers > 0 else att_cache,
cnn_cache=cnn_cache[i:i+1] if paddle.shape(cnn_cache)[0] > 0 else cnn_cache,
)
xs,
att_mask,
pos_emb,
mask_pad=paddle.ones([0, 0, 0], dtype=paddle.bool),
att_cache=att_cache[i:i + 1] if elayers > 0 else att_cache,
cnn_cache=cnn_cache[i:i + 1]
if paddle.shape(cnn_cache)[0] > 0 else cnn_cache, )
# new_att_cache = (1, head, attention_key_size, d_k*2)
# new_cnn_cache = (B=1, hidden-dim, cache_t2)
r_att_cache.append(new_att_cache[:,:, next_cache_start:, :])
r_cnn_cache.append(new_cnn_cache.unsqueeze(0)) # add elayer dim
r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
r_cnn_cache.append(new_cnn_cache.unsqueeze(0)) # add elayer dim
if self.normalize_before:
xs = self.after_norm(xs)
@ -270,7 +273,6 @@ class BaseEncoder(nn.Layer):
r_cnn_cache = paddle.concat(r_cnn_cache, axis=0)
return xs, r_att_cache, r_cnn_cache
def forward_chunk_by_chunk(
self,
xs: paddle.Tensor,
@ -315,8 +317,8 @@ class BaseEncoder(nn.Layer):
num_frames = xs.shape[1]
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
att_cache: paddle.Tensor = paddle.zeros([0,0,0,0])
cnn_cache: paddle.Tensor = paddle.zeros([0,0,0,0])
att_cache: paddle.Tensor = paddle.zeros([0, 0, 0, 0])
cnn_cache: paddle.Tensor = paddle.zeros([0, 0, 0, 0])
outputs = []
offset = 0
@ -326,7 +328,8 @@ class BaseEncoder(nn.Layer):
chunk_xs = xs[:, cur:end, :]
(y, att_cache, cnn_cache) = self.forward_chunk(
chunk_xs, offset, required_cache_size, att_cache, cnn_cache)
chunk_xs, offset, required_cache_size, att_cache, cnn_cache,
paddle.ones([0, 0, 0], dtype=paddle.bool))
outputs.append(y)
offset += y.shape[1]

@ -76,9 +76,10 @@ class TransformerEncoderLayer(nn.Layer):
x: paddle.Tensor,
mask: paddle.Tensor,
pos_emb: paddle.Tensor,
mask_pad: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool),
att_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
cnn_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
mask_pad: paddle.
Tensor, # paddle.ones([0, 0, 0], dtype=paddle.bool)
att_cache: paddle.Tensor, # paddle.zeros([0, 0, 0, 0])
cnn_cache: paddle.Tensor, # paddle.zeros([0, 0, 0, 0])
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""Compute encoded features.
Args:
@ -105,7 +106,8 @@ class TransformerEncoderLayer(nn.Layer):
if self.normalize_before:
x = self.norm1(x)
x_att, new_att_cache = self.self_attn(x, x, x, mask, cache=att_cache)
x_att, new_att_cache = self.self_attn(
x, x, x, mask, paddle.empty([0]), cache=att_cache)
if self.concat_after:
x_concat = paddle.concat((x, x_att), axis=-1)
@ -193,9 +195,9 @@ class ConformerEncoderLayer(nn.Layer):
x: paddle.Tensor,
mask: paddle.Tensor,
pos_emb: paddle.Tensor,
mask_pad: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool),
att_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
cnn_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
mask_pad: paddle.Tensor, #paddle.ones([0, 0, 0],dtype=paddle.bool)
att_cache: paddle.Tensor, # paddle.zeros([0, 0, 0, 0])
cnn_cache: paddle.Tensor, # paddle.zeros([0, 0, 0, 0])
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""Compute encoded features.
Args:

@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
class DefaultInitializerContext(object):
"""

@ -102,8 +102,10 @@ class OnlineCTCEndpoint:
assert self.num_frames_decoded >= self.trailing_silence_frames
assert self.frame_shift_in_ms > 0
decoding_something = (self.num_frames_decoded > self.trailing_silence_frames) and decoding_something
decoding_something = (
self.num_frames_decoded > self.trailing_silence_frames
) and decoding_something
utterance_length = self.num_frames_decoded * self.frame_shift_in_ms
trailing_silence = self.trailing_silence_frames * self.frame_shift_in_ms

@ -21,12 +21,12 @@ import paddle
from numpy import float32
from yacs.config import CfgNode
from paddlespeech.audio.transform.transformation import Transformation
from paddlespeech.cli.asr.infer import ASRExecutor
from paddlespeech.cli.log import logger
from paddlespeech.resource import CommonTaskResource
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.modules.ctc import CTCDecoder
from paddlespeech.audio.transform.transformation import Transformation
from paddlespeech.s2t.utils.utility import UpdateConfig
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.server.utils import onnx_infer

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save