[TTS] add opencpop HIFIGAN example (#3038)

* add opencpop voc, test=tts

* soft link

* add opencpop hifigan, test=tts

* update
pull/3054/head
liangym 3 years ago committed by GitHub
parent 4e9bca177a
commit 348064de0d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,6 @@
# Opencpop
* svs1 - DiffSinger
* voc1 - Parallel WaveGAN
* voc5 - HiFiGAN

@ -0,0 +1,167 @@
# This is the configuration file for CSMSC dataset.
# This configuration is based on HiFiGAN V1, which is an official configuration.
# But I found that the optimizer setting does not work well with my implementation.
# So I changed optimizer settings as follows:
# - AdamW -> Adam
# - betas: [0.8, 0.99] -> betas: [0.5, 0.9]
# - Scheduler: ExponentialLR -> MultiStepLR
# To match the shift size difference, the upsample scales is also modified from the original 256 shift setting.
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 24000 # Sampling rate.
n_fft: 512 # FFT size (samples).
n_shift: 128 # Hop size (samples). 12.5ms
win_length: 512 # Window length (samples). 50ms
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
n_mels: 80 # Number of mel basis.
fmin: 80 # Minimum freq in mel basis calculation. (Hz)
fmax: 12000 # Maximum frequency in mel basis calculation. (Hz)
###########################################################
# GENERATOR NETWORK ARCHITECTURE SETTING #
###########################################################
generator_params:
in_channels: 80 # Number of input channels.
out_channels: 1 # Number of output channels.
channels: 512 # Number of initial channels.
kernel_size: 7 # Kernel size of initial and final conv layers.
upsample_scales: [8, 4, 2, 2] # Upsampling scales.
upsample_kernel_sizes: [16, 8, 4, 4] # Kernel size for upsampling layers.
resblock_kernel_sizes: [3, 7, 11] # Kernel size for residual blocks.
resblock_dilations: # Dilations for residual blocks.
- [1, 3, 5]
- [1, 3, 5]
- [1, 3, 5]
use_additional_convs: True # Whether to use additional conv layer in residual blocks.
bias: True # Whether to use bias parameter in conv.
nonlinear_activation: "leakyrelu" # Nonlinear activation type.
nonlinear_activation_params: # Nonlinear activation paramters.
negative_slope: 0.1
use_weight_norm: True # Whether to apply weight normalization.
###########################################################
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
###########################################################
discriminator_params:
scales: 3 # Number of multi-scale discriminator.
scale_downsample_pooling: "AvgPool1D" # Pooling operation for scale discriminator.
scale_downsample_pooling_params:
kernel_size: 4 # Pooling kernel size.
stride: 2 # Pooling stride.
padding: 2 # Padding size.
scale_discriminator_params:
in_channels: 1 # Number of input channels.
out_channels: 1 # Number of output channels.
kernel_sizes: [15, 41, 5, 3] # List of kernel sizes.
channels: 128 # Initial number of channels.
max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
max_groups: 16 # Maximum number of groups in downsampling conv layers.
bias: True
downsample_scales: [4, 4, 4, 4, 1] # Downsampling scales.
nonlinear_activation: "leakyrelu" # Nonlinear activation.
nonlinear_activation_params:
negative_slope: 0.1
follow_official_norm: True # Whether to follow the official norm setting.
periods: [2, 3, 5, 7, 11] # List of period for multi-period discriminator.
period_discriminator_params:
in_channels: 1 # Number of input channels.
out_channels: 1 # Number of output channels.
kernel_sizes: [5, 3] # List of kernel sizes.
channels: 32 # Initial number of channels.
downsample_scales: [3, 3, 3, 3, 1] # Downsampling scales.
max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
bias: True # Whether to use bias parameter in conv layer."
nonlinear_activation: "leakyrelu" # Nonlinear activation.
nonlinear_activation_params: # Nonlinear activation paramters.
negative_slope: 0.1
use_weight_norm: True # Whether to apply weight normalization.
use_spectral_norm: False # Whether to apply spectral normalization.
###########################################################
# STFT LOSS SETTING #
###########################################################
use_stft_loss: False # Whether to use multi-resolution STFT loss.
use_mel_loss: True # Whether to use Mel-spectrogram loss.
mel_loss_params:
fs: 24000
fft_size: 512
hop_size: 128
win_length: 512
window: "hann"
num_mels: 80
fmin: 30
fmax: 12000
log_base: null
generator_adv_loss_params:
average_by_discriminators: False # Whether to average loss by #discriminators.
discriminator_adv_loss_params:
average_by_discriminators: False # Whether to average loss by #discriminators.
use_feat_match_loss: True
feat_match_loss_params:
average_by_discriminators: False # Whether to average loss by #discriminators.
average_by_layers: False # Whether to average loss by #layers in each discriminator.
include_final_outputs: False # Whether to include final outputs in feat match loss calculation.
###########################################################
# ADVERSARIAL LOSS SETTING #
###########################################################
lambda_aux: 45.0 # Loss balancing coefficient for STFT loss.
lambda_adv: 1.0 # Loss balancing coefficient for adversarial loss.
lambda_feat_match: 2.0 # Loss balancing coefficient for feat match loss..
###########################################################
# DATA LOADER SETTING #
###########################################################
batch_size: 16 # Batch size.
batch_max_steps: 8400 # Length of each audio in batch. Make sure dividable by hop_size.
num_workers: 1 # Number of workers in DataLoader.
###########################################################
# OPTIMIZER & SCHEDULER SETTING #
###########################################################
generator_optimizer_params:
beta1: 0.5
beta2: 0.9
weight_decay: 0.0 # Generator's weight decay coefficient.
generator_scheduler_params:
learning_rate: 2.0e-4 # Generator's learning rate.
gamma: 0.5 # Generator's scheduler gamma.
milestones: # At each milestone, lr will be multiplied by gamma.
- 200000
- 400000
- 600000
- 800000
generator_grad_norm: -1 # Generator's gradient norm.
discriminator_optimizer_params:
beta1: 0.5
beta2: 0.9
weight_decay: 0.0 # Discriminator's weight decay coefficient.
discriminator_scheduler_params:
learning_rate: 2.0e-4 # Discriminator's learning rate.
gamma: 0.5 # Discriminator's scheduler gamma.
milestones: # At each milestone, lr will be multiplied by gamma.
- 200000
- 400000
- 600000
- 800000
discriminator_grad_norm: -1 # Discriminator's gradient norm.
###########################################################
# INTERVAL SETTING #
###########################################################
generator_train_start_steps: 1 # Number of steps to start to train discriminator.
discriminator_train_start_steps: 0 # Number of steps to start to train discriminator.
train_max_steps: 2500000 # Number of training steps.
save_interval_steps: 5000 # Interval steps to save checkpoint.
eval_interval_steps: 1000 # Interval steps to evaluate the network.
###########################################################
# OTHER SETTING #
###########################################################
num_snapshots: 4 # max number of snapshots to keep while training
seed: 42 # random seed for paddle, random, and np.random

@ -0,0 +1,168 @@
# This is the configuration file for CSMSC dataset.
# This configuration is based on HiFiGAN V1, which is an official configuration.
# But I found that the optimizer setting does not work well with my implementation.
# So I changed optimizer settings as follows:
# - AdamW -> Adam
# - betas: [0.8, 0.99] -> betas: [0.5, 0.9]
# - Scheduler: ExponentialLR -> MultiStepLR
# To match the shift size difference, the upsample scales is also modified from the original 256 shift setting.
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 24000 # Sampling rate.
n_fft: 512 # FFT size (samples).
n_shift: 128 # Hop size (samples). 12.5ms
win_length: 512 # Window length (samples). 50ms
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
n_mels: 80 # Number of mel basis.
fmin: 80 # Minimum freq in mel basis calculation. (Hz)
fmax: 12000 # Maximum frequency in mel basis calculation. (Hz)
###########################################################
# GENERATOR NETWORK ARCHITECTURE SETTING #
###########################################################
generator_params:
in_channels: 80 # Number of input channels.
out_channels: 1 # Number of output channels.
channels: 512 # Number of initial channels.
kernel_size: 7 # Kernel size of initial and final conv layers.
upsample_scales: [8, 4, 2, 2] # Upsampling scales.
upsample_kernel_sizes: [16, 8, 4, 4] # Kernel size for upsampling layers.
resblock_kernel_sizes: [3, 7, 11] # Kernel size for residual blocks.
resblock_dilations: # Dilations for residual blocks.
- [1, 3, 5]
- [1, 3, 5]
- [1, 3, 5]
use_additional_convs: True # Whether to use additional conv layer in residual blocks.
bias: True # Whether to use bias parameter in conv.
nonlinear_activation: "leakyrelu" # Nonlinear activation type.
nonlinear_activation_params: # Nonlinear activation paramters.
negative_slope: 0.1
use_weight_norm: True # Whether to apply weight normalization.
###########################################################
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
###########################################################
discriminator_params:
scales: 3 # Number of multi-scale discriminator.
scale_downsample_pooling: "AvgPool1D" # Pooling operation for scale discriminator.
scale_downsample_pooling_params:
kernel_size: 4 # Pooling kernel size.
stride: 2 # Pooling stride.
padding: 2 # Padding size.
scale_discriminator_params:
in_channels: 1 # Number of input channels.
out_channels: 1 # Number of output channels.
kernel_sizes: [15, 41, 5, 3] # List of kernel sizes.
channels: 128 # Initial number of channels.
max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
max_groups: 16 # Maximum number of groups in downsampling conv layers.
bias: True
downsample_scales: [4, 4, 4, 4, 1] # Downsampling scales.
nonlinear_activation: "leakyrelu" # Nonlinear activation.
nonlinear_activation_params:
negative_slope: 0.1
follow_official_norm: True # Whether to follow the official norm setting.
periods: [2, 3, 5, 7, 11] # List of period for multi-period discriminator.
period_discriminator_params:
in_channels: 1 # Number of input channels.
out_channels: 1 # Number of output channels.
kernel_sizes: [5, 3] # List of kernel sizes.
channels: 32 # Initial number of channels.
downsample_scales: [3, 3, 3, 3, 1] # Downsampling scales.
max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
bias: True # Whether to use bias parameter in conv layer."
nonlinear_activation: "leakyrelu" # Nonlinear activation.
nonlinear_activation_params: # Nonlinear activation paramters.
negative_slope: 0.1
use_weight_norm: True # Whether to apply weight normalization.
use_spectral_norm: False # Whether to apply spectral normalization.
###########################################################
# STFT LOSS SETTING #
###########################################################
use_stft_loss: False # Whether to use multi-resolution STFT loss.
use_mel_loss: True # Whether to use Mel-spectrogram loss.
mel_loss_params:
fs: 24000
fft_size: 512
hop_size: 128
win_length: 512
window: "hann"
num_mels: 80
fmin: 30
fmax: 12000
log_base: null
generator_adv_loss_params:
average_by_discriminators: False # Whether to average loss by #discriminators.
discriminator_adv_loss_params:
average_by_discriminators: False # Whether to average loss by #discriminators.
use_feat_match_loss: True
feat_match_loss_params:
average_by_discriminators: False # Whether to average loss by #discriminators.
average_by_layers: False # Whether to average loss by #layers in each discriminator.
include_final_outputs: False # Whether to include final outputs in feat match loss calculation.
###########################################################
# ADVERSARIAL LOSS SETTING #
###########################################################
lambda_aux: 45.0 # Loss balancing coefficient for STFT loss.
lambda_adv: 1.0 # Loss balancing coefficient for adversarial loss.
lambda_feat_match: 2.0 # Loss balancing coefficient for feat match loss..
###########################################################
# DATA LOADER SETTING #
###########################################################
#batch_size: 16 # Batch size.
batch_size: 1 # Batch size.
batch_max_steps: 8400 # Length of each audio in batch. Make sure dividable by hop_size.
num_workers: 1 # Number of workers in DataLoader.
###########################################################
# OPTIMIZER & SCHEDULER SETTING #
###########################################################
generator_optimizer_params:
beta1: 0.5
beta2: 0.9
weight_decay: 0.0 # Generator's weight decay coefficient.
generator_scheduler_params:
learning_rate: 2.0e-4 # Generator's learning rate.
gamma: 0.5 # Generator's scheduler gamma.
milestones: # At each milestone, lr will be multiplied by gamma.
- 200000
- 400000
- 600000
- 800000
generator_grad_norm: -1 # Generator's gradient norm.
discriminator_optimizer_params:
beta1: 0.5
beta2: 0.9
weight_decay: 0.0 # Discriminator's weight decay coefficient.
discriminator_scheduler_params:
learning_rate: 2.0e-4 # Discriminator's learning rate.
gamma: 0.5 # Discriminator's scheduler gamma.
milestones: # At each milestone, lr will be multiplied by gamma.
- 200000
- 400000
- 600000
- 800000
discriminator_grad_norm: -1 # Discriminator's gradient norm.
###########################################################
# INTERVAL SETTING #
###########################################################
generator_train_start_steps: 1 # Number of steps to start to train discriminator.
discriminator_train_start_steps: 0 # Number of steps to start to train discriminator.
train_max_steps: 2600000 # Number of training steps.
save_interval_steps: 5000 # Interval steps to save checkpoint.
eval_interval_steps: 1000 # Interval steps to evaluate the network.
###########################################################
# OTHER SETTING #
###########################################################
num_snapshots: 4 # max number of snapshots to keep while training
seed: 42 # random seed for paddle, random, and np.random

@ -0,0 +1,74 @@
#!/bin/bash
source path.sh
gpus=0
stage=0
stop_stage=100
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
python3 ${MAIN_ROOT}/paddlespeech/t2s/exps/diffsinger/gen_gta_mel.py \
--diffsinger-config=diffsinger_opencpop_ckpt_1.4.0/default.yaml \
--diffsinger-checkpoint=diffsinger_opencpop_ckpt_1.4.0/snapshot_iter_160000.pdz \
--diffsinger-stat=diffsinger_opencpop_ckpt_1.4.0/speech_stats.npy \
--diffsinger-stretch=diffsinger_opencpop_ckpt_1.4.0/speech_stretchs.npy \
--dur-file=~/datasets/Opencpop/segments/transcriptions.txt \
--output-dir=dump_finetune \
--phones-dict=diffsinger_opencpop_ckpt_1.4.0/phone_id_map.txt \
--dataset=opencpop \
--rootdir=~/datasets/Opencpop/segments/
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
python3 ${MAIN_ROOT}/utils/link_wav.py \
--old-dump-dir=dump \
--dump-dir=dump_finetune
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# get features' stats(mean and std)
echo "Get features' stats ..."
cp dump/train/feats_stats.npy dump_finetune/train/
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# normalize, dev and test should use train's stats
echo "Normalize ..."
python3 ${BIN_DIR}/../normalize.py \
--metadata=dump_finetune/train/raw/metadata.jsonl \
--dumpdir=dump_finetune/train/norm \
--stats=dump_finetune/train/feats_stats.npy
python3 ${BIN_DIR}/../normalize.py \
--metadata=dump_finetune/dev/raw/metadata.jsonl \
--dumpdir=dump_finetune/dev/norm \
--stats=dump_finetune/train/feats_stats.npy
python3 ${BIN_DIR}/../normalize.py \
--metadata=dump_finetune/test/raw/metadata.jsonl \
--dumpdir=dump_finetune/test/norm \
--stats=dump_finetune/train/feats_stats.npy
fi
# create finetune env
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "create finetune env"
python3 local/prepare_env.py \
--pretrained_model_dir=exp/default/checkpoints/ \
--output_dir=exp/finetune/
fi
# finetune
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
CUDA_VISIBLE_DEVICES=${gpus} \
FLAGS_cudnn_exhaustive_search=true \
FLAGS_conv_workspace_size_limit=4000 \
python ${BIN_DIR}/train.py \
--train-metadata=dump_finetune/train/norm/metadata.jsonl \
--dev-metadata=dump_finetune/dev/norm/metadata.jsonl \
--config=conf/finetune.yaml \
--output-dir=exp/finetune \
--ngpu=1
fi

@ -0,0 +1 @@
../../../csmsc/voc1/local/PTQ_static.sh

@ -0,0 +1,15 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../../dygraph_to_static.py \
--type=voc \
--voc=hifigan_opencpop \
--voc_config=${config_path} \
--voc_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--voc_stat=dump/train/feats_stats.npy \
--inference_dir=exp/default/inference/

@ -0,0 +1 @@
../../../other/tts_finetune/tts3/local/prepare_env.py

@ -0,0 +1 @@
../../voc1/local/preprocess.sh

@ -0,0 +1 @@
../../../csmsc/voc5/local/synthesize.sh

@ -0,0 +1 @@
../../../csmsc/voc1/local/train.sh

@ -0,0 +1 @@
../../csmsc/voc5/path.sh

@ -0,0 +1,42 @@
#!/bin/bash
set -e
source path.sh
gpus=0
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_2500000.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
./local/preprocess.sh ${conf_path} || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
# dygraph to static
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
CUDA_VISIBLE_DEVICES=${gpus} ./local/dygraph_to_static.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
# PTQ_static
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
CUDA_VISIBLE_DEVICES=${gpus} ./local/PTQ_static.sh ${train_output_path} hifigan_opencpop || exit -1
fi

@ -43,6 +43,7 @@ def parse_args():
'hifigan_ljspeech',
'hifigan_vctk',
'pwgan_opencpop',
'hifigan_opencpop',
],
help='Choose model type of tts task.')

@ -0,0 +1,240 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# generate mels using durations.txt
# for mb melgan finetune
import argparse
import os
from pathlib import Path
import numpy as np
import paddle
import yaml
from tqdm import tqdm
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.preprocess_utils import get_sentences_svs
from paddlespeech.t2s.models.diffsinger import DiffSinger
from paddlespeech.t2s.models.diffsinger import DiffSingerInference
from paddlespeech.t2s.modules.normalizer import ZScore
from paddlespeech.t2s.utils import str2bool
def evaluate(args, diffsinger_config):
rootdir = Path(args.rootdir).expanduser()
assert rootdir.is_dir()
# construct dataset for evaluation
with open(args.phones_dict, "r") as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
phone_dict = {}
for phn, id in phn_id:
phone_dict[phn] = int(id)
if args.speaker_dict:
with open(args.speaker_dict, 'rt') as f:
spk_id_list = [line.strip().split() for line in f.readlines()]
spk_num = len(spk_id_list)
else:
spk_num = None
with open(args.diffsinger_stretch, "r") as f:
spec_min = np.load(args.diffsinger_stretch)[0]
spec_max = np.load(args.diffsinger_stretch)[1]
spec_min = paddle.to_tensor(spec_min)
spec_max = paddle.to_tensor(spec_max)
print("min and max spec done!")
odim = diffsinger_config.n_mels
diffsinger_config["model"]["fastspeech2_params"]["spk_num"] = spk_num
model = DiffSinger(
spec_min=spec_min,
spec_max=spec_max,
idim=vocab_size,
odim=odim,
**diffsinger_config["model"], )
model.set_state_dict(paddle.load(args.diffsinger_checkpoint)["main_params"])
model.eval()
stat = np.load(args.diffsinger_stat)
mu, std = stat
mu = paddle.to_tensor(mu)
std = paddle.to_tensor(std)
diffsinger_normalizer = ZScore(mu, std)
diffsinger_inference = DiffSingerInference(diffsinger_normalizer, model)
diffsinger_inference.eval()
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
sentences, speaker_set = get_sentences_svs(
args.dur_file,
dataset=args.dataset,
sample_rate=diffsinger_config.fs,
n_shift=diffsinger_config.n_shift, )
if args.dataset == "opencpop":
wavdir = rootdir / "wavs"
# split data into 3 sections
train_file = rootdir / "train.txt"
train_wav_files = []
with open(train_file, "r") as f_train:
for line in f_train.readlines():
utt = line.split("|")[0]
wav_name = utt + ".wav"
wav_path = wavdir / wav_name
train_wav_files.append(wav_path)
test_file = rootdir / "test.txt"
dev_wav_files = []
test_wav_files = []
num_dev = 106
count = 0
with open(test_file, "r") as f_test:
for line in f_test.readlines():
count += 1
utt = line.split("|")[0]
wav_name = utt + ".wav"
wav_path = wavdir / wav_name
if count > num_dev:
test_wav_files.append(wav_path)
else:
dev_wav_files.append(wav_path)
else:
print("dataset should in {opencpop} now!")
train_wav_files = [
os.path.basename(str(str_path)) for str_path in train_wav_files
]
dev_wav_files = [
os.path.basename(str(str_path)) for str_path in dev_wav_files
]
test_wav_files = [
os.path.basename(str(str_path)) for str_path in test_wav_files
]
for i, utt_id in enumerate(tqdm(sentences)):
phones = sentences[utt_id][0]
durations = sentences[utt_id][1]
note = sentences[utt_id][2]
note_dur = sentences[utt_id][3]
is_slur = sentences[utt_id][4]
speaker = sentences[utt_id][-1]
phone_ids = [phone_dict[phn] for phn in phones]
phone_ids = paddle.to_tensor(np.array(phone_ids))
if args.speaker_dict:
speaker_id = int(
[item[1] for item in spk_id_list if speaker == item[0]][0])
speaker_id = paddle.to_tensor(speaker_id)
else:
speaker_id = None
durations = paddle.to_tensor(np.array(durations))
note = paddle.to_tensor(np.array(note))
note_dur = paddle.to_tensor(np.array(note_dur))
is_slur = paddle.to_tensor(np.array(is_slur))
# 生成的和真实的可能有 1, 2 帧的差距,但是 batch_fn 会修复
# split data into 3 sections
wav_path = utt_id + ".wav"
if wav_path in train_wav_files:
sub_output_dir = output_dir / ("train/raw")
elif wav_path in dev_wav_files:
sub_output_dir = output_dir / ("dev/raw")
elif wav_path in test_wav_files:
sub_output_dir = output_dir / ("test/raw")
sub_output_dir.mkdir(parents=True, exist_ok=True)
with paddle.no_grad():
mel = diffsinger_inference(
text=phone_ids,
note=note,
note_dur=note_dur,
is_slur=is_slur,
get_mel_fs2=False)
np.save(sub_output_dir / (utt_id + "_feats.npy"), mel)
def main():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(
description="Generate mel with diffsinger.")
parser.add_argument(
"--dataset",
default="opencpop",
type=str,
help="name of dataset, should in {opencpop} now")
parser.add_argument(
"--rootdir", default=None, type=str, help="directory to dataset.")
parser.add_argument(
"--diffsinger-config", type=str, help="diffsinger config file.")
parser.add_argument(
"--diffsinger-checkpoint",
type=str,
help="diffsinger checkpoint to load.")
parser.add_argument(
"--diffsinger-stat",
type=str,
help="mean and standard deviation used to normalize spectrogram when training diffsinger."
)
parser.add_argument(
"--diffsinger-stretch",
type=str,
help="min and max mel used to stretch before training diffusion.")
parser.add_argument(
"--phones-dict",
type=str,
default="phone_id_map.txt",
help="phone vocabulary file.")
parser.add_argument(
"--speaker-dict", type=str, default=None, help="speaker id map file.")
parser.add_argument(
"--dur-file", default=None, type=str, help="path to durations.txt.")
parser.add_argument("--output-dir", type=str, help="output dir.")
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
args = parser.parse_args()
if args.ngpu == 0:
paddle.set_device("cpu")
elif args.ngpu > 0:
paddle.set_device("gpu")
else:
print("ngpu should >= 0 !")
with open(args.diffsinger_config) as f:
diffsinger_config = CfgNode(yaml.safe_load(f))
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(diffsinger_config)
evaluate(args, diffsinger_config)
if __name__ == "__main__":
main()

@ -132,6 +132,7 @@ def parse_args():
'pwgan_male',
'hifigan_male',
'pwgan_opencpop',
'hifigan_opencpop',
],
help='Choose vocoder type of tts task.')
parser.add_argument(

Loading…
Cancel
Save