[TTS] add opencpop HIFIGAN example (#3038)
* add opencpop voc, test=tts * soft link * add opencpop hifigan, test=tts * updatepull/3054/head
parent
4e9bca177a
commit
348064de0d
@ -0,0 +1,6 @@
|
||||
|
||||
# Opencpop
|
||||
|
||||
* svs1 - DiffSinger
|
||||
* voc1 - Parallel WaveGAN
|
||||
* voc5 - HiFiGAN
|
@ -0,0 +1,167 @@
|
||||
# This is the configuration file for CSMSC dataset.
|
||||
# This configuration is based on HiFiGAN V1, which is an official configuration.
|
||||
# But I found that the optimizer setting does not work well with my implementation.
|
||||
# So I changed optimizer settings as follows:
|
||||
# - AdamW -> Adam
|
||||
# - betas: [0.8, 0.99] -> betas: [0.5, 0.9]
|
||||
# - Scheduler: ExponentialLR -> MultiStepLR
|
||||
# To match the shift size difference, the upsample scales is also modified from the original 256 shift setting.
|
||||
|
||||
###########################################################
|
||||
# FEATURE EXTRACTION SETTING #
|
||||
###########################################################
|
||||
fs: 24000 # Sampling rate.
|
||||
n_fft: 512 # FFT size (samples).
|
||||
n_shift: 128 # Hop size (samples). 12.5ms
|
||||
win_length: 512 # Window length (samples). 50ms
|
||||
# If set to null, it will be the same as fft_size.
|
||||
window: "hann" # Window function.
|
||||
n_mels: 80 # Number of mel basis.
|
||||
fmin: 80 # Minimum freq in mel basis calculation. (Hz)
|
||||
fmax: 12000 # Maximum frequency in mel basis calculation. (Hz)
|
||||
|
||||
###########################################################
|
||||
# GENERATOR NETWORK ARCHITECTURE SETTING #
|
||||
###########################################################
|
||||
generator_params:
|
||||
in_channels: 80 # Number of input channels.
|
||||
out_channels: 1 # Number of output channels.
|
||||
channels: 512 # Number of initial channels.
|
||||
kernel_size: 7 # Kernel size of initial and final conv layers.
|
||||
upsample_scales: [8, 4, 2, 2] # Upsampling scales.
|
||||
upsample_kernel_sizes: [16, 8, 4, 4] # Kernel size for upsampling layers.
|
||||
resblock_kernel_sizes: [3, 7, 11] # Kernel size for residual blocks.
|
||||
resblock_dilations: # Dilations for residual blocks.
|
||||
- [1, 3, 5]
|
||||
- [1, 3, 5]
|
||||
- [1, 3, 5]
|
||||
use_additional_convs: True # Whether to use additional conv layer in residual blocks.
|
||||
bias: True # Whether to use bias parameter in conv.
|
||||
nonlinear_activation: "leakyrelu" # Nonlinear activation type.
|
||||
nonlinear_activation_params: # Nonlinear activation paramters.
|
||||
negative_slope: 0.1
|
||||
use_weight_norm: True # Whether to apply weight normalization.
|
||||
|
||||
|
||||
###########################################################
|
||||
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
|
||||
###########################################################
|
||||
discriminator_params:
|
||||
scales: 3 # Number of multi-scale discriminator.
|
||||
scale_downsample_pooling: "AvgPool1D" # Pooling operation for scale discriminator.
|
||||
scale_downsample_pooling_params:
|
||||
kernel_size: 4 # Pooling kernel size.
|
||||
stride: 2 # Pooling stride.
|
||||
padding: 2 # Padding size.
|
||||
scale_discriminator_params:
|
||||
in_channels: 1 # Number of input channels.
|
||||
out_channels: 1 # Number of output channels.
|
||||
kernel_sizes: [15, 41, 5, 3] # List of kernel sizes.
|
||||
channels: 128 # Initial number of channels.
|
||||
max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
|
||||
max_groups: 16 # Maximum number of groups in downsampling conv layers.
|
||||
bias: True
|
||||
downsample_scales: [4, 4, 4, 4, 1] # Downsampling scales.
|
||||
nonlinear_activation: "leakyrelu" # Nonlinear activation.
|
||||
nonlinear_activation_params:
|
||||
negative_slope: 0.1
|
||||
follow_official_norm: True # Whether to follow the official norm setting.
|
||||
periods: [2, 3, 5, 7, 11] # List of period for multi-period discriminator.
|
||||
period_discriminator_params:
|
||||
in_channels: 1 # Number of input channels.
|
||||
out_channels: 1 # Number of output channels.
|
||||
kernel_sizes: [5, 3] # List of kernel sizes.
|
||||
channels: 32 # Initial number of channels.
|
||||
downsample_scales: [3, 3, 3, 3, 1] # Downsampling scales.
|
||||
max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
|
||||
bias: True # Whether to use bias parameter in conv layer."
|
||||
nonlinear_activation: "leakyrelu" # Nonlinear activation.
|
||||
nonlinear_activation_params: # Nonlinear activation paramters.
|
||||
negative_slope: 0.1
|
||||
use_weight_norm: True # Whether to apply weight normalization.
|
||||
use_spectral_norm: False # Whether to apply spectral normalization.
|
||||
|
||||
|
||||
###########################################################
|
||||
# STFT LOSS SETTING #
|
||||
###########################################################
|
||||
use_stft_loss: False # Whether to use multi-resolution STFT loss.
|
||||
use_mel_loss: True # Whether to use Mel-spectrogram loss.
|
||||
mel_loss_params:
|
||||
fs: 24000
|
||||
fft_size: 512
|
||||
hop_size: 128
|
||||
win_length: 512
|
||||
window: "hann"
|
||||
num_mels: 80
|
||||
fmin: 30
|
||||
fmax: 12000
|
||||
log_base: null
|
||||
generator_adv_loss_params:
|
||||
average_by_discriminators: False # Whether to average loss by #discriminators.
|
||||
discriminator_adv_loss_params:
|
||||
average_by_discriminators: False # Whether to average loss by #discriminators.
|
||||
use_feat_match_loss: True
|
||||
feat_match_loss_params:
|
||||
average_by_discriminators: False # Whether to average loss by #discriminators.
|
||||
average_by_layers: False # Whether to average loss by #layers in each discriminator.
|
||||
include_final_outputs: False # Whether to include final outputs in feat match loss calculation.
|
||||
|
||||
###########################################################
|
||||
# ADVERSARIAL LOSS SETTING #
|
||||
###########################################################
|
||||
lambda_aux: 45.0 # Loss balancing coefficient for STFT loss.
|
||||
lambda_adv: 1.0 # Loss balancing coefficient for adversarial loss.
|
||||
lambda_feat_match: 2.0 # Loss balancing coefficient for feat match loss..
|
||||
|
||||
###########################################################
|
||||
# DATA LOADER SETTING #
|
||||
###########################################################
|
||||
batch_size: 16 # Batch size.
|
||||
batch_max_steps: 8400 # Length of each audio in batch. Make sure dividable by hop_size.
|
||||
num_workers: 1 # Number of workers in DataLoader.
|
||||
|
||||
###########################################################
|
||||
# OPTIMIZER & SCHEDULER SETTING #
|
||||
###########################################################
|
||||
generator_optimizer_params:
|
||||
beta1: 0.5
|
||||
beta2: 0.9
|
||||
weight_decay: 0.0 # Generator's weight decay coefficient.
|
||||
generator_scheduler_params:
|
||||
learning_rate: 2.0e-4 # Generator's learning rate.
|
||||
gamma: 0.5 # Generator's scheduler gamma.
|
||||
milestones: # At each milestone, lr will be multiplied by gamma.
|
||||
- 200000
|
||||
- 400000
|
||||
- 600000
|
||||
- 800000
|
||||
generator_grad_norm: -1 # Generator's gradient norm.
|
||||
discriminator_optimizer_params:
|
||||
beta1: 0.5
|
||||
beta2: 0.9
|
||||
weight_decay: 0.0 # Discriminator's weight decay coefficient.
|
||||
discriminator_scheduler_params:
|
||||
learning_rate: 2.0e-4 # Discriminator's learning rate.
|
||||
gamma: 0.5 # Discriminator's scheduler gamma.
|
||||
milestones: # At each milestone, lr will be multiplied by gamma.
|
||||
- 200000
|
||||
- 400000
|
||||
- 600000
|
||||
- 800000
|
||||
discriminator_grad_norm: -1 # Discriminator's gradient norm.
|
||||
|
||||
###########################################################
|
||||
# INTERVAL SETTING #
|
||||
###########################################################
|
||||
generator_train_start_steps: 1 # Number of steps to start to train discriminator.
|
||||
discriminator_train_start_steps: 0 # Number of steps to start to train discriminator.
|
||||
train_max_steps: 2500000 # Number of training steps.
|
||||
save_interval_steps: 5000 # Interval steps to save checkpoint.
|
||||
eval_interval_steps: 1000 # Interval steps to evaluate the network.
|
||||
|
||||
###########################################################
|
||||
# OTHER SETTING #
|
||||
###########################################################
|
||||
num_snapshots: 4 # max number of snapshots to keep while training
|
||||
seed: 42 # random seed for paddle, random, and np.random
|
@ -0,0 +1,168 @@
|
||||
# This is the configuration file for CSMSC dataset.
|
||||
# This configuration is based on HiFiGAN V1, which is an official configuration.
|
||||
# But I found that the optimizer setting does not work well with my implementation.
|
||||
# So I changed optimizer settings as follows:
|
||||
# - AdamW -> Adam
|
||||
# - betas: [0.8, 0.99] -> betas: [0.5, 0.9]
|
||||
# - Scheduler: ExponentialLR -> MultiStepLR
|
||||
# To match the shift size difference, the upsample scales is also modified from the original 256 shift setting.
|
||||
|
||||
###########################################################
|
||||
# FEATURE EXTRACTION SETTING #
|
||||
###########################################################
|
||||
fs: 24000 # Sampling rate.
|
||||
n_fft: 512 # FFT size (samples).
|
||||
n_shift: 128 # Hop size (samples). 12.5ms
|
||||
win_length: 512 # Window length (samples). 50ms
|
||||
# If set to null, it will be the same as fft_size.
|
||||
window: "hann" # Window function.
|
||||
n_mels: 80 # Number of mel basis.
|
||||
fmin: 80 # Minimum freq in mel basis calculation. (Hz)
|
||||
fmax: 12000 # Maximum frequency in mel basis calculation. (Hz)
|
||||
|
||||
###########################################################
|
||||
# GENERATOR NETWORK ARCHITECTURE SETTING #
|
||||
###########################################################
|
||||
generator_params:
|
||||
in_channels: 80 # Number of input channels.
|
||||
out_channels: 1 # Number of output channels.
|
||||
channels: 512 # Number of initial channels.
|
||||
kernel_size: 7 # Kernel size of initial and final conv layers.
|
||||
upsample_scales: [8, 4, 2, 2] # Upsampling scales.
|
||||
upsample_kernel_sizes: [16, 8, 4, 4] # Kernel size for upsampling layers.
|
||||
resblock_kernel_sizes: [3, 7, 11] # Kernel size for residual blocks.
|
||||
resblock_dilations: # Dilations for residual blocks.
|
||||
- [1, 3, 5]
|
||||
- [1, 3, 5]
|
||||
- [1, 3, 5]
|
||||
use_additional_convs: True # Whether to use additional conv layer in residual blocks.
|
||||
bias: True # Whether to use bias parameter in conv.
|
||||
nonlinear_activation: "leakyrelu" # Nonlinear activation type.
|
||||
nonlinear_activation_params: # Nonlinear activation paramters.
|
||||
negative_slope: 0.1
|
||||
use_weight_norm: True # Whether to apply weight normalization.
|
||||
|
||||
|
||||
###########################################################
|
||||
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
|
||||
###########################################################
|
||||
discriminator_params:
|
||||
scales: 3 # Number of multi-scale discriminator.
|
||||
scale_downsample_pooling: "AvgPool1D" # Pooling operation for scale discriminator.
|
||||
scale_downsample_pooling_params:
|
||||
kernel_size: 4 # Pooling kernel size.
|
||||
stride: 2 # Pooling stride.
|
||||
padding: 2 # Padding size.
|
||||
scale_discriminator_params:
|
||||
in_channels: 1 # Number of input channels.
|
||||
out_channels: 1 # Number of output channels.
|
||||
kernel_sizes: [15, 41, 5, 3] # List of kernel sizes.
|
||||
channels: 128 # Initial number of channels.
|
||||
max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
|
||||
max_groups: 16 # Maximum number of groups in downsampling conv layers.
|
||||
bias: True
|
||||
downsample_scales: [4, 4, 4, 4, 1] # Downsampling scales.
|
||||
nonlinear_activation: "leakyrelu" # Nonlinear activation.
|
||||
nonlinear_activation_params:
|
||||
negative_slope: 0.1
|
||||
follow_official_norm: True # Whether to follow the official norm setting.
|
||||
periods: [2, 3, 5, 7, 11] # List of period for multi-period discriminator.
|
||||
period_discriminator_params:
|
||||
in_channels: 1 # Number of input channels.
|
||||
out_channels: 1 # Number of output channels.
|
||||
kernel_sizes: [5, 3] # List of kernel sizes.
|
||||
channels: 32 # Initial number of channels.
|
||||
downsample_scales: [3, 3, 3, 3, 1] # Downsampling scales.
|
||||
max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
|
||||
bias: True # Whether to use bias parameter in conv layer."
|
||||
nonlinear_activation: "leakyrelu" # Nonlinear activation.
|
||||
nonlinear_activation_params: # Nonlinear activation paramters.
|
||||
negative_slope: 0.1
|
||||
use_weight_norm: True # Whether to apply weight normalization.
|
||||
use_spectral_norm: False # Whether to apply spectral normalization.
|
||||
|
||||
|
||||
###########################################################
|
||||
# STFT LOSS SETTING #
|
||||
###########################################################
|
||||
use_stft_loss: False # Whether to use multi-resolution STFT loss.
|
||||
use_mel_loss: True # Whether to use Mel-spectrogram loss.
|
||||
mel_loss_params:
|
||||
fs: 24000
|
||||
fft_size: 512
|
||||
hop_size: 128
|
||||
win_length: 512
|
||||
window: "hann"
|
||||
num_mels: 80
|
||||
fmin: 30
|
||||
fmax: 12000
|
||||
log_base: null
|
||||
generator_adv_loss_params:
|
||||
average_by_discriminators: False # Whether to average loss by #discriminators.
|
||||
discriminator_adv_loss_params:
|
||||
average_by_discriminators: False # Whether to average loss by #discriminators.
|
||||
use_feat_match_loss: True
|
||||
feat_match_loss_params:
|
||||
average_by_discriminators: False # Whether to average loss by #discriminators.
|
||||
average_by_layers: False # Whether to average loss by #layers in each discriminator.
|
||||
include_final_outputs: False # Whether to include final outputs in feat match loss calculation.
|
||||
|
||||
###########################################################
|
||||
# ADVERSARIAL LOSS SETTING #
|
||||
###########################################################
|
||||
lambda_aux: 45.0 # Loss balancing coefficient for STFT loss.
|
||||
lambda_adv: 1.0 # Loss balancing coefficient for adversarial loss.
|
||||
lambda_feat_match: 2.0 # Loss balancing coefficient for feat match loss..
|
||||
|
||||
###########################################################
|
||||
# DATA LOADER SETTING #
|
||||
###########################################################
|
||||
#batch_size: 16 # Batch size.
|
||||
batch_size: 1 # Batch size.
|
||||
batch_max_steps: 8400 # Length of each audio in batch. Make sure dividable by hop_size.
|
||||
num_workers: 1 # Number of workers in DataLoader.
|
||||
|
||||
###########################################################
|
||||
# OPTIMIZER & SCHEDULER SETTING #
|
||||
###########################################################
|
||||
generator_optimizer_params:
|
||||
beta1: 0.5
|
||||
beta2: 0.9
|
||||
weight_decay: 0.0 # Generator's weight decay coefficient.
|
||||
generator_scheduler_params:
|
||||
learning_rate: 2.0e-4 # Generator's learning rate.
|
||||
gamma: 0.5 # Generator's scheduler gamma.
|
||||
milestones: # At each milestone, lr will be multiplied by gamma.
|
||||
- 200000
|
||||
- 400000
|
||||
- 600000
|
||||
- 800000
|
||||
generator_grad_norm: -1 # Generator's gradient norm.
|
||||
discriminator_optimizer_params:
|
||||
beta1: 0.5
|
||||
beta2: 0.9
|
||||
weight_decay: 0.0 # Discriminator's weight decay coefficient.
|
||||
discriminator_scheduler_params:
|
||||
learning_rate: 2.0e-4 # Discriminator's learning rate.
|
||||
gamma: 0.5 # Discriminator's scheduler gamma.
|
||||
milestones: # At each milestone, lr will be multiplied by gamma.
|
||||
- 200000
|
||||
- 400000
|
||||
- 600000
|
||||
- 800000
|
||||
discriminator_grad_norm: -1 # Discriminator's gradient norm.
|
||||
|
||||
###########################################################
|
||||
# INTERVAL SETTING #
|
||||
###########################################################
|
||||
generator_train_start_steps: 1 # Number of steps to start to train discriminator.
|
||||
discriminator_train_start_steps: 0 # Number of steps to start to train discriminator.
|
||||
train_max_steps: 2600000 # Number of training steps.
|
||||
save_interval_steps: 5000 # Interval steps to save checkpoint.
|
||||
eval_interval_steps: 1000 # Interval steps to evaluate the network.
|
||||
|
||||
###########################################################
|
||||
# OTHER SETTING #
|
||||
###########################################################
|
||||
num_snapshots: 4 # max number of snapshots to keep while training
|
||||
seed: 42 # random seed for paddle, random, and np.random
|
@ -0,0 +1,74 @@
|
||||
#!/bin/bash
|
||||
|
||||
source path.sh
|
||||
|
||||
gpus=0
|
||||
stage=0
|
||||
stop_stage=100
|
||||
|
||||
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
python3 ${MAIN_ROOT}/paddlespeech/t2s/exps/diffsinger/gen_gta_mel.py \
|
||||
--diffsinger-config=diffsinger_opencpop_ckpt_1.4.0/default.yaml \
|
||||
--diffsinger-checkpoint=diffsinger_opencpop_ckpt_1.4.0/snapshot_iter_160000.pdz \
|
||||
--diffsinger-stat=diffsinger_opencpop_ckpt_1.4.0/speech_stats.npy \
|
||||
--diffsinger-stretch=diffsinger_opencpop_ckpt_1.4.0/speech_stretchs.npy \
|
||||
--dur-file=~/datasets/Opencpop/segments/transcriptions.txt \
|
||||
--output-dir=dump_finetune \
|
||||
--phones-dict=diffsinger_opencpop_ckpt_1.4.0/phone_id_map.txt \
|
||||
--dataset=opencpop \
|
||||
--rootdir=~/datasets/Opencpop/segments/
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
python3 ${MAIN_ROOT}/utils/link_wav.py \
|
||||
--old-dump-dir=dump \
|
||||
--dump-dir=dump_finetune
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
# get features' stats(mean and std)
|
||||
echo "Get features' stats ..."
|
||||
cp dump/train/feats_stats.npy dump_finetune/train/
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
# normalize, dev and test should use train's stats
|
||||
echo "Normalize ..."
|
||||
|
||||
python3 ${BIN_DIR}/../normalize.py \
|
||||
--metadata=dump_finetune/train/raw/metadata.jsonl \
|
||||
--dumpdir=dump_finetune/train/norm \
|
||||
--stats=dump_finetune/train/feats_stats.npy
|
||||
python3 ${BIN_DIR}/../normalize.py \
|
||||
--metadata=dump_finetune/dev/raw/metadata.jsonl \
|
||||
--dumpdir=dump_finetune/dev/norm \
|
||||
--stats=dump_finetune/train/feats_stats.npy
|
||||
|
||||
python3 ${BIN_DIR}/../normalize.py \
|
||||
--metadata=dump_finetune/test/raw/metadata.jsonl \
|
||||
--dumpdir=dump_finetune/test/norm \
|
||||
--stats=dump_finetune/train/feats_stats.npy
|
||||
fi
|
||||
|
||||
# create finetune env
|
||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
echo "create finetune env"
|
||||
python3 local/prepare_env.py \
|
||||
--pretrained_model_dir=exp/default/checkpoints/ \
|
||||
--output_dir=exp/finetune/
|
||||
fi
|
||||
|
||||
# finetune
|
||||
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
CUDA_VISIBLE_DEVICES=${gpus} \
|
||||
FLAGS_cudnn_exhaustive_search=true \
|
||||
FLAGS_conv_workspace_size_limit=4000 \
|
||||
python ${BIN_DIR}/train.py \
|
||||
--train-metadata=dump_finetune/train/norm/metadata.jsonl \
|
||||
--dev-metadata=dump_finetune/dev/norm/metadata.jsonl \
|
||||
--config=conf/finetune.yaml \
|
||||
--output-dir=exp/finetune \
|
||||
--ngpu=1
|
||||
fi
|
@ -0,0 +1 @@
|
||||
../../../csmsc/voc1/local/PTQ_static.sh
|
@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
config_path=$1
|
||||
train_output_path=$2
|
||||
ckpt_name=$3
|
||||
|
||||
FLAGS_allocator_strategy=naive_best_fit \
|
||||
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
|
||||
python3 ${BIN_DIR}/../../dygraph_to_static.py \
|
||||
--type=voc \
|
||||
--voc=hifigan_opencpop \
|
||||
--voc_config=${config_path} \
|
||||
--voc_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
|
||||
--voc_stat=dump/train/feats_stats.npy \
|
||||
--inference_dir=exp/default/inference/
|
@ -0,0 +1 @@
|
||||
../../../other/tts_finetune/tts3/local/prepare_env.py
|
@ -0,0 +1 @@
|
||||
../../voc1/local/preprocess.sh
|
@ -0,0 +1 @@
|
||||
../../../csmsc/voc5/local/synthesize.sh
|
@ -0,0 +1 @@
|
||||
../../../csmsc/voc1/local/train.sh
|
@ -0,0 +1 @@
|
||||
../../csmsc/voc5/path.sh
|
@ -0,0 +1,42 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
source path.sh
|
||||
|
||||
gpus=0
|
||||
stage=0
|
||||
stop_stage=100
|
||||
|
||||
conf_path=conf/default.yaml
|
||||
train_output_path=exp/default
|
||||
ckpt_name=snapshot_iter_2500000.pdz
|
||||
|
||||
# with the following command, you can choose the stage range you want to run
|
||||
# such as `./run.sh --stage 0 --stop-stage 0`
|
||||
# this can not be mixed use with `$1`, `$2` ...
|
||||
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
# prepare data
|
||||
./local/preprocess.sh ${conf_path} || exit -1
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
|
||||
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
# synthesize
|
||||
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
|
||||
fi
|
||||
|
||||
# dygraph to static
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
CUDA_VISIBLE_DEVICES=${gpus} ./local/dygraph_to_static.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
|
||||
fi
|
||||
|
||||
# PTQ_static
|
||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
CUDA_VISIBLE_DEVICES=${gpus} ./local/PTQ_static.sh ${train_output_path} hifigan_opencpop || exit -1
|
||||
fi
|
@ -0,0 +1,240 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# generate mels using durations.txt
|
||||
# for mb melgan finetune
|
||||
import argparse
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import yaml
|
||||
from tqdm import tqdm
|
||||
from yacs.config import CfgNode
|
||||
|
||||
from paddlespeech.t2s.datasets.preprocess_utils import get_sentences_svs
|
||||
from paddlespeech.t2s.models.diffsinger import DiffSinger
|
||||
from paddlespeech.t2s.models.diffsinger import DiffSingerInference
|
||||
from paddlespeech.t2s.modules.normalizer import ZScore
|
||||
from paddlespeech.t2s.utils import str2bool
|
||||
|
||||
|
||||
def evaluate(args, diffsinger_config):
|
||||
rootdir = Path(args.rootdir).expanduser()
|
||||
assert rootdir.is_dir()
|
||||
|
||||
# construct dataset for evaluation
|
||||
with open(args.phones_dict, "r") as f:
|
||||
phn_id = [line.strip().split() for line in f.readlines()]
|
||||
vocab_size = len(phn_id)
|
||||
print("vocab_size:", vocab_size)
|
||||
|
||||
phone_dict = {}
|
||||
for phn, id in phn_id:
|
||||
phone_dict[phn] = int(id)
|
||||
|
||||
if args.speaker_dict:
|
||||
with open(args.speaker_dict, 'rt') as f:
|
||||
spk_id_list = [line.strip().split() for line in f.readlines()]
|
||||
spk_num = len(spk_id_list)
|
||||
else:
|
||||
spk_num = None
|
||||
|
||||
with open(args.diffsinger_stretch, "r") as f:
|
||||
spec_min = np.load(args.diffsinger_stretch)[0]
|
||||
spec_max = np.load(args.diffsinger_stretch)[1]
|
||||
spec_min = paddle.to_tensor(spec_min)
|
||||
spec_max = paddle.to_tensor(spec_max)
|
||||
print("min and max spec done!")
|
||||
|
||||
odim = diffsinger_config.n_mels
|
||||
diffsinger_config["model"]["fastspeech2_params"]["spk_num"] = spk_num
|
||||
model = DiffSinger(
|
||||
spec_min=spec_min,
|
||||
spec_max=spec_max,
|
||||
idim=vocab_size,
|
||||
odim=odim,
|
||||
**diffsinger_config["model"], )
|
||||
|
||||
model.set_state_dict(paddle.load(args.diffsinger_checkpoint)["main_params"])
|
||||
model.eval()
|
||||
|
||||
stat = np.load(args.diffsinger_stat)
|
||||
mu, std = stat
|
||||
mu = paddle.to_tensor(mu)
|
||||
std = paddle.to_tensor(std)
|
||||
diffsinger_normalizer = ZScore(mu, std)
|
||||
|
||||
diffsinger_inference = DiffSingerInference(diffsinger_normalizer, model)
|
||||
diffsinger_inference.eval()
|
||||
|
||||
output_dir = Path(args.output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
sentences, speaker_set = get_sentences_svs(
|
||||
args.dur_file,
|
||||
dataset=args.dataset,
|
||||
sample_rate=diffsinger_config.fs,
|
||||
n_shift=diffsinger_config.n_shift, )
|
||||
|
||||
if args.dataset == "opencpop":
|
||||
wavdir = rootdir / "wavs"
|
||||
# split data into 3 sections
|
||||
train_file = rootdir / "train.txt"
|
||||
train_wav_files = []
|
||||
with open(train_file, "r") as f_train:
|
||||
for line in f_train.readlines():
|
||||
utt = line.split("|")[0]
|
||||
wav_name = utt + ".wav"
|
||||
wav_path = wavdir / wav_name
|
||||
train_wav_files.append(wav_path)
|
||||
|
||||
test_file = rootdir / "test.txt"
|
||||
dev_wav_files = []
|
||||
test_wav_files = []
|
||||
num_dev = 106
|
||||
count = 0
|
||||
with open(test_file, "r") as f_test:
|
||||
for line in f_test.readlines():
|
||||
count += 1
|
||||
utt = line.split("|")[0]
|
||||
wav_name = utt + ".wav"
|
||||
wav_path = wavdir / wav_name
|
||||
if count > num_dev:
|
||||
test_wav_files.append(wav_path)
|
||||
else:
|
||||
dev_wav_files.append(wav_path)
|
||||
else:
|
||||
print("dataset should in {opencpop} now!")
|
||||
|
||||
train_wav_files = [
|
||||
os.path.basename(str(str_path)) for str_path in train_wav_files
|
||||
]
|
||||
dev_wav_files = [
|
||||
os.path.basename(str(str_path)) for str_path in dev_wav_files
|
||||
]
|
||||
test_wav_files = [
|
||||
os.path.basename(str(str_path)) for str_path in test_wav_files
|
||||
]
|
||||
|
||||
for i, utt_id in enumerate(tqdm(sentences)):
|
||||
phones = sentences[utt_id][0]
|
||||
durations = sentences[utt_id][1]
|
||||
note = sentences[utt_id][2]
|
||||
note_dur = sentences[utt_id][3]
|
||||
is_slur = sentences[utt_id][4]
|
||||
speaker = sentences[utt_id][-1]
|
||||
|
||||
phone_ids = [phone_dict[phn] for phn in phones]
|
||||
phone_ids = paddle.to_tensor(np.array(phone_ids))
|
||||
|
||||
if args.speaker_dict:
|
||||
speaker_id = int(
|
||||
[item[1] for item in spk_id_list if speaker == item[0]][0])
|
||||
speaker_id = paddle.to_tensor(speaker_id)
|
||||
else:
|
||||
speaker_id = None
|
||||
|
||||
durations = paddle.to_tensor(np.array(durations))
|
||||
note = paddle.to_tensor(np.array(note))
|
||||
note_dur = paddle.to_tensor(np.array(note_dur))
|
||||
is_slur = paddle.to_tensor(np.array(is_slur))
|
||||
# 生成的和真实的可能有 1, 2 帧的差距,但是 batch_fn 会修复
|
||||
# split data into 3 sections
|
||||
|
||||
wav_path = utt_id + ".wav"
|
||||
|
||||
if wav_path in train_wav_files:
|
||||
sub_output_dir = output_dir / ("train/raw")
|
||||
elif wav_path in dev_wav_files:
|
||||
sub_output_dir = output_dir / ("dev/raw")
|
||||
elif wav_path in test_wav_files:
|
||||
sub_output_dir = output_dir / ("test/raw")
|
||||
|
||||
sub_output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with paddle.no_grad():
|
||||
mel = diffsinger_inference(
|
||||
text=phone_ids,
|
||||
note=note,
|
||||
note_dur=note_dur,
|
||||
is_slur=is_slur,
|
||||
get_mel_fs2=False)
|
||||
np.save(sub_output_dir / (utt_id + "_feats.npy"), mel)
|
||||
|
||||
|
||||
def main():
|
||||
# parse args and config and redirect to train_sp
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Generate mel with diffsinger.")
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
default="opencpop",
|
||||
type=str,
|
||||
help="name of dataset, should in {opencpop} now")
|
||||
parser.add_argument(
|
||||
"--rootdir", default=None, type=str, help="directory to dataset.")
|
||||
parser.add_argument(
|
||||
"--diffsinger-config", type=str, help="diffsinger config file.")
|
||||
parser.add_argument(
|
||||
"--diffsinger-checkpoint",
|
||||
type=str,
|
||||
help="diffsinger checkpoint to load.")
|
||||
parser.add_argument(
|
||||
"--diffsinger-stat",
|
||||
type=str,
|
||||
help="mean and standard deviation used to normalize spectrogram when training diffsinger."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--diffsinger-stretch",
|
||||
type=str,
|
||||
help="min and max mel used to stretch before training diffusion.")
|
||||
|
||||
parser.add_argument(
|
||||
"--phones-dict",
|
||||
type=str,
|
||||
default="phone_id_map.txt",
|
||||
help="phone vocabulary file.")
|
||||
|
||||
parser.add_argument(
|
||||
"--speaker-dict", type=str, default=None, help="speaker id map file.")
|
||||
|
||||
parser.add_argument(
|
||||
"--dur-file", default=None, type=str, help="path to durations.txt.")
|
||||
parser.add_argument("--output-dir", type=str, help="output dir.")
|
||||
parser.add_argument(
|
||||
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.ngpu == 0:
|
||||
paddle.set_device("cpu")
|
||||
elif args.ngpu > 0:
|
||||
paddle.set_device("gpu")
|
||||
else:
|
||||
print("ngpu should >= 0 !")
|
||||
|
||||
with open(args.diffsinger_config) as f:
|
||||
diffsinger_config = CfgNode(yaml.safe_load(f))
|
||||
|
||||
print("========Args========")
|
||||
print(yaml.safe_dump(vars(args)))
|
||||
print("========Config========")
|
||||
print(diffsinger_config)
|
||||
|
||||
evaluate(args, diffsinger_config)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in new issue