From 322301a6db2280f9358a37059db276de9fdcdc9a Mon Sep 17 00:00:00 2001 From: Hui Zhang Date: Tue, 20 Sep 2022 11:27:22 +0000 Subject: [PATCH] add reverse pad with sos and eos test --- tests/unit/asr/reverse_pad_list.py | 145 +++++++++++++++++++++++++++++ 1 file changed, 145 insertions(+) create mode 100644 tests/unit/asr/reverse_pad_list.py diff --git a/tests/unit/asr/reverse_pad_list.py b/tests/unit/asr/reverse_pad_list.py new file mode 100644 index 000000000..60e768bcf --- /dev/null +++ b/tests/unit/asr/reverse_pad_list.py @@ -0,0 +1,145 @@ + + + + +import paddle +import numpy as np +import unittest + +# from paddlespeech.audio.utils.tensor_utils import reverse_pad_list +import paddlespeech.s2t +from paddlespeech.audio.utils.tensor_utils import add_sos_eos +from paddlespeech.audio.utils.tensor_utils import pad_sequence + +def reverse_pad_list(ys_pad: paddle.Tensor, + ys_lens: paddle.Tensor, + pad_value: float=-1.0) -> paddle.Tensor: + """Reverse padding for the list of tensors. + Args: + ys_pad (tensor): The padded tensor (B, Tokenmax). + ys_lens (tensor): The lens of token seqs (B) + pad_value (int): Value for padding. + Returns: + Tensor: Padded tensor (B, Tokenmax). + Examples: + >>> x + tensor([[1, 2, 3, 4], [5, 6, 7, 0], [8, 9, 0, 0]]) + >>> pad_list(x, 0) + tensor([[4, 3, 2, 1], + [7, 6, 5, 0], + [9, 8, 0, 0]]) + """ + r_ys_pad = pad_sequence([(paddle.flip(y[:i], [0])) + for y, i in zip(ys_pad, ys_lens)], True, pad_value) + return r_ys_pad + +def naive_reverse_pad_list_with_sos_eos(r_hyps, r_hyps_lens, sos=5000, eos=5000, ignore_id=-1): + r_hyps = reverse_pad_list(r_hyps, r_hyps_lens, float(ignore_id)) + r_hyps, _ = add_sos_eos(r_hyps, sos, eos, ignore_id) + return r_hyps + +def reverse_pad_list_with_sos_eos(r_hyps, r_hyps_lens, sos=5000, eos=5000, ignore_id=-1): + # >>> r_hyps = reverse_pad_list(r_hyps, r_hyps_lens, float(self.ignore_id)) + # >>> r_hyps, _ = add_sos_eos(r_hyps, self.sos, self.eos, self.ignore_id) + max_len = paddle.max(r_hyps_lens) + index_range = paddle.arange(0, max_len, 1) + seq_len_expand = r_hyps_lens.unsqueeze(1) + seq_mask = seq_len_expand > index_range # (beam, max_len) + + index = (seq_len_expand - 1) - index_range # (beam, max_len) + # >>> index + # >>> tensor([[ 2, 1, 0], + # >>> [ 2, 1, 0], + # >>> [ 0, -1, -2]]) + index = index * seq_mask + + # >>> index + # >>> tensor([[2, 1, 0], + # >>> [2, 1, 0], + # >>> [0, 0, 0]]) + def paddle_gather(x, dim, index): + index_shape = index.shape + index_flatten = index.flatten() + if dim < 0: + dim = len(x.shape) + dim + nd_index = [] + for k in range(len(x.shape)): + if k == dim: + nd_index.append(index_flatten) + else: + reshape_shape = [1] * len(x.shape) + reshape_shape[k] = x.shape[k] + x_arange = paddle.arange(x.shape[k], dtype=index.dtype) + x_arange = x_arange.reshape(reshape_shape) + dim_index = paddle.expand(x_arange, index_shape).flatten() + nd_index.append(dim_index) + ind2 = paddle.transpose(paddle.stack(nd_index), + [1, 0]).astype("int64") + paddle_out = paddle.gather_nd(x, ind2).reshape(index_shape) + return paddle_out + + r_hyps = paddle_gather(r_hyps, 1, index) + # >>> r_hyps + # >>> tensor([[3, 2, 1], + # >>> [4, 8, 9], + # >>> [2, 2, 2]]) + r_hyps = paddle.where(seq_mask, r_hyps, eos) + # >>> r_hyps + # >>> tensor([[3, 2, 1], + # >>> [4, 8, 9], + # >>> [2, eos, eos]]) + B = r_hyps.shape[0] + _sos = paddle.ones([B, 1], dtype=r_hyps.dtype) * sos + # r_hyps = paddle.concat([hyps[:, 0:1], r_hyps], axis=1) + r_hyps = paddle.concat([_sos, r_hyps], axis=1) + # >>> r_hyps + # >>> tensor([[sos, 3, 2, 1], + # >>> [sos, 4, 8, 9], + # >>> [sos, 2, eos, eos]]) + return r_hyps + + +class TestU2Model(unittest.TestCase): + def setUp(self): + paddle.set_device('cpu') + + self.sos=5000 + self.eos=5000 + self.ignore_id=-1 + self.reverse_hyps = paddle.to_tensor( + [[ 4, 3, 2, 1, -1], + [ 5, 4, 3, 2, 1]] + ) + self.reverse_hyps_sos_eos = paddle.to_tensor( + [[self.sos, 4 , 3 , 2 , 1 , self.eos], + [self.sos, 5 , 4 , 3 , 2 , 1 ]] + ) + + self.hyps = paddle.to_tensor( + [ + [1, 2, 3, 4, -1], + [1, 2, 3, 4, 5] + ] + ) + + + self.hyps_lens = paddle.to_tensor([4, 5], paddle.int32) + + def test_reverse_pad_list(self): + r_hyps = reverse_pad_list(self.hyps, self.hyps_lens) + self.assertSequenceEqual(r_hyps.tolist(), self.reverse_hyps.tolist()) + + def test_naive_reverse_pad_list_with_sos_eos(self): + r_hyps_sos_eos = naive_reverse_pad_list_with_sos_eos(self.hyps, self.hyps_lens) + self.assertSequenceEqual(r_hyps_sos_eos.tolist(), self.reverse_hyps_sos_eos.tolist()) + + def test_static_reverse_pad_list_with_sos_eos(self): + r_hyps_sos_eos_static = reverse_pad_list_with_sos_eos(self.hyps, self.hyps_lens) + self.assertSequenceEqual(r_hyps_sos_eos_static.tolist(), self.reverse_hyps_sos_eos.tolist()) + + + +if __name__ == '__main__': + unittest.main() + +