From 2d40cdf99c0eead1a75fb76ecc004f11bd8b448a Mon Sep 17 00:00:00 2001 From: lance6716 Date: Tue, 14 Feb 2023 20:49:08 +0800 Subject: [PATCH] Update run.sh --- examples/canton/tts3/run.sh | 33 --------------------------------- 1 file changed, 33 deletions(-) diff --git a/examples/canton/tts3/run.sh b/examples/canton/tts3/run.sh index 9e5c27a16..7c9038d45 100755 --- a/examples/canton/tts3/run.sh +++ b/examples/canton/tts3/run.sh @@ -35,36 +35,3 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then # synthesize_e2e, vocoder is pwgan by default CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1 fi - -if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then - # inference with static model, vocoder is pwgan by default - CUDA_VISIBLE_DEVICES=${gpus} ./local/inference.sh ${train_output_path} || exit -1 -fi - -if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then - # install paddle2onnx - version=$(echo `pip list |grep "paddle2onnx"` |awk -F" " '{print $2}') - if [[ -z "$version" || ${version} != '1.0.0' ]]; then - pip install paddle2onnx==1.0.0 - fi - ./local/paddle2onnx.sh ${train_output_path} inference inference_onnx fastspeech2_aishell3 - # considering the balance between speed and quality, we recommend that you use hifigan as vocoder - ./local/paddle2onnx.sh ${train_output_path} inference inference_onnx pwgan_aishell3 - # ./local/paddle2onnx.sh ${train_output_path} inference inference_onnx hifigan_aishell3 - -fi - -# inference with onnxruntime, use fastspeech2 + pwgan by default -if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then - ./local/ort_predict.sh ${train_output_path} -fi - -if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then - ./local/export2lite.sh ${train_output_path} inference pdlite fastspeech2_aishell3 x86 - ./local/export2lite.sh ${train_output_path} inference pdlite pwgan_aishell3 x86 - # ./local/export2lite.sh ${train_output_path} inference pdlite hifigan_aishell3 x86 -fi - -if [ ${stage} -le 8 ] && [ ${stop_stage} -ge 8 ]; then - CUDA_VISIBLE_DEVICES=${gpus} ./local/lite_predict.sh ${train_output_path} || exit -1 -fi