|
|
|
@ -30,11 +30,6 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
|
|
|
|
|
paddlespeech vector --task spk --input vec.job
|
|
|
|
|
|
|
|
|
|
echo -e "demo2 85236145389.wav \n demo3 85236145389.wav" | paddlespeech vector --task spk
|
|
|
|
|
|
|
|
|
|
paddlespeech vector --task score --input "./85236145389.wav ./123456789.wav"
|
|
|
|
|
|
|
|
|
|
echo -e "demo4 85236145389.wav 85236145389.wav \n demo5 85236145389.wav 123456789.wav" > vec.job
|
|
|
|
|
paddlespeech vector --task score --input vec.job
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
@ -108,17 +103,6 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
|
|
|
|
|
audio_file='./85236145389.wav',
|
|
|
|
|
device=paddle.get_device())
|
|
|
|
|
print('Audio embedding Result: \n{}'.format(audio_emb))
|
|
|
|
|
|
|
|
|
|
test_emb = vector_executor(
|
|
|
|
|
model='ecapatdnn_voxceleb12',
|
|
|
|
|
sample_rate=16000,
|
|
|
|
|
config=None, # Set `config` and `ckpt_path` to None to use pretrained model.
|
|
|
|
|
ckpt_path=None,
|
|
|
|
|
audio_file='./123456789.wav',
|
|
|
|
|
device=paddle.get_device())
|
|
|
|
|
print('Test embedding Result: \n{}'.format(test_emb))
|
|
|
|
|
score = vector_executor.get_embeddings_score(audio_emb, test_emb)
|
|
|
|
|
print(f"Eembeddings Score: {score}")
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
Output:
|
|
|
|
@ -165,49 +149,6 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
|
|
|
|
|
-3.3925855 5.079156 7.759716 4.677565 5.8457737
|
|
|
|
|
2.402413 7.7071047 3.9711342 -6.390043 6.1268735
|
|
|
|
|
-3.7760346 -11.118123 ]
|
|
|
|
|
# get the test embedding
|
|
|
|
|
Test embedding Result:
|
|
|
|
|
[ -1.902964 2.0690894 -8.034194 3.5472693 0.18089125
|
|
|
|
|
6.9085927 1.4097427 -1.9487704 -10.021278 -0.20755845
|
|
|
|
|
-8.04332 4.344489 2.3200977 -14.306299 5.184692
|
|
|
|
|
-11.55602 -3.8497238 0.6444722 1.2833948 2.6766639
|
|
|
|
|
0.5878921 0.7946299 1.7207596 2.5791872 14.998469
|
|
|
|
|
-1.3385371 15.031221 -0.8006958 1.99287 -9.52007
|
|
|
|
|
2.435466 4.003221 -4.33817 -4.898601 -5.304714
|
|
|
|
|
-18.033886 10.790787 -12.784645 -5.641755 2.9761686
|
|
|
|
|
-10.566622 1.4839455 6.152458 -5.7195854 2.8603241
|
|
|
|
|
6.112133 8.489869 5.5958056 1.2836679 -1.2293907
|
|
|
|
|
0.89927405 7.0288725 -2.854029 -0.9782962 5.8255906
|
|
|
|
|
14.905906 -5.025907 0.7866458 -4.2444224 -16.354029
|
|
|
|
|
10.521315 0.9604709 -3.3257897 7.144871 -13.592733
|
|
|
|
|
-8.568869 -1.7953678 0.26313916 10.916714 -6.9374123
|
|
|
|
|
1.857403 -6.2746415 2.8154466 -7.2338667 -2.293357
|
|
|
|
|
-0.05452765 5.4287076 5.0849075 -6.690375 -1.6183422
|
|
|
|
|
3.654291 0.94352573 -9.200294 -5.4749465 -3.5235846
|
|
|
|
|
1.3420814 4.240421 -2.772944 -2.8451524 16.311104
|
|
|
|
|
4.2969875 -1.762936 -12.5758915 8.595198 -0.8835239
|
|
|
|
|
-1.5708797 1.568961 1.1413603 3.5032008 -0.45251232
|
|
|
|
|
-6.786333 16.89443 5.3366146 -8.789056 0.6355629
|
|
|
|
|
3.2579517 -3.328322 7.5969577 0.66025066 -6.550468
|
|
|
|
|
-9.148656 2.020372 -0.4615173 1.1965656 -3.8764873
|
|
|
|
|
11.6562195 -6.0750933 12.182899 3.2218833 0.81969476
|
|
|
|
|
5.570001 -3.8459578 -7.205299 7.9262037 -7.6611166
|
|
|
|
|
-5.249467 -2.2671914 7.2658715 -13.298164 4.821147
|
|
|
|
|
-2.7263982 11.691089 -3.8918593 -2.838112 -1.0336838
|
|
|
|
|
-3.8034165 2.8536487 -5.60398 -1.1972581 1.3455094
|
|
|
|
|
-3.4903061 2.2408795 5.5010734 -3.970756 11.99696
|
|
|
|
|
-7.8858757 0.43160373 -5.5059714 4.3426995 16.322706
|
|
|
|
|
11.635366 0.72157705 -9.245714 -3.91465 -4.449838
|
|
|
|
|
-1.5716927 7.713747 -2.2430465 -6.198303 -13.481864
|
|
|
|
|
2.8156567 -5.7812386 5.1456156 2.7289324 -14.505571
|
|
|
|
|
13.270688 3.448231 -7.0659585 4.5886116 -4.466099
|
|
|
|
|
-0.296428 -11.463529 -2.6076477 14.110243 -6.9725137
|
|
|
|
|
-1.9962958 2.7119343 19.391657 0.01961198 14.607133
|
|
|
|
|
-1.6695905 -4.391516 1.3131028 -6.670972 -5.888604
|
|
|
|
|
12.0612335 5.9285784 3.3715196 1.492534 10.723728
|
|
|
|
|
-0.95514804 -12.085431 ]
|
|
|
|
|
# get the score between enroll and test
|
|
|
|
|
Eembeddings Score: 0.4292638301849365
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 4.Pretrained Models
|
|
|
|
|