commit
239f284209
@ -1,243 +0,0 @@
|
||||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "ctc_beam_search_decoder.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <utility>
|
||||
|
||||
#include "ThreadPool.h"
|
||||
#include "fst/fstlib.h"
|
||||
|
||||
#include "decoder_utils.h"
|
||||
#include "path_trie.h"
|
||||
|
||||
using FSTMATCH = fst::SortedMatcher<fst::StdVectorFst>;
|
||||
|
||||
std::vector<std::pair<double, std::string>> ctc_beam_search_decoder(
|
||||
const std::vector<std::vector<double>> &probs_seq,
|
||||
const std::vector<std::string> &vocabulary,
|
||||
size_t beam_size,
|
||||
double cutoff_prob,
|
||||
size_t cutoff_top_n,
|
||||
Scorer *ext_scorer,
|
||||
size_t blank_id) {
|
||||
// dimension check
|
||||
size_t num_time_steps = probs_seq.size();
|
||||
for (size_t i = 0; i < num_time_steps; ++i) {
|
||||
VALID_CHECK_EQ(probs_seq[i].size(),
|
||||
// vocabulary.size() + 1,
|
||||
vocabulary.size(),
|
||||
"The shape of probs_seq does not match with "
|
||||
"the shape of the vocabulary");
|
||||
}
|
||||
// assign space id
|
||||
auto it = std::find(vocabulary.begin(), vocabulary.end(), kSPACE);
|
||||
int space_id = it - vocabulary.begin();
|
||||
// if no space in vocabulary
|
||||
if ((size_t)space_id >= vocabulary.size()) {
|
||||
space_id = -2;
|
||||
}
|
||||
// init prefixes' root
|
||||
PathTrie root;
|
||||
root.score = root.log_prob_b_prev = 0.0;
|
||||
std::vector<PathTrie *> prefixes;
|
||||
prefixes.push_back(&root);
|
||||
|
||||
if (ext_scorer != nullptr && !ext_scorer->is_character_based()) {
|
||||
auto fst_dict =
|
||||
static_cast<fst::StdVectorFst *>(ext_scorer->dictionary);
|
||||
fst::StdVectorFst *dict_ptr = fst_dict->Copy(true);
|
||||
root.set_dictionary(dict_ptr);
|
||||
auto matcher = std::make_shared<FSTMATCH>(*dict_ptr, fst::MATCH_INPUT);
|
||||
root.set_matcher(matcher);
|
||||
}
|
||||
|
||||
// prefix search over time
|
||||
for (size_t time_step = 0; time_step < num_time_steps; ++time_step) {
|
||||
auto &prob = probs_seq[time_step];
|
||||
|
||||
float min_cutoff = -NUM_FLT_INF;
|
||||
bool full_beam = false;
|
||||
if (ext_scorer != nullptr) {
|
||||
size_t num_prefixes = std::min(prefixes.size(), beam_size);
|
||||
std::sort(prefixes.begin(),
|
||||
prefixes.begin() + num_prefixes,
|
||||
prefix_compare);
|
||||
min_cutoff = prefixes[num_prefixes - 1]->score +
|
||||
std::log(prob[blank_id]) -
|
||||
std::max(0.0, ext_scorer->beta);
|
||||
full_beam = (num_prefixes == beam_size);
|
||||
}
|
||||
|
||||
std::vector<std::pair<size_t, float>> log_prob_idx =
|
||||
get_pruned_log_probs(prob, cutoff_prob, cutoff_top_n);
|
||||
// loop over chars
|
||||
for (size_t index = 0; index < log_prob_idx.size(); index++) {
|
||||
auto c = log_prob_idx[index].first;
|
||||
auto log_prob_c = log_prob_idx[index].second;
|
||||
|
||||
for (size_t i = 0; i < prefixes.size() && i < beam_size; ++i) {
|
||||
auto prefix = prefixes[i];
|
||||
if (full_beam && log_prob_c + prefix->score < min_cutoff) {
|
||||
break;
|
||||
}
|
||||
// blank
|
||||
if (c == blank_id) {
|
||||
prefix->log_prob_b_cur = log_sum_exp(
|
||||
prefix->log_prob_b_cur, log_prob_c + prefix->score);
|
||||
continue;
|
||||
}
|
||||
// repeated character
|
||||
if (c == prefix->character) {
|
||||
prefix->log_prob_nb_cur =
|
||||
log_sum_exp(prefix->log_prob_nb_cur,
|
||||
log_prob_c + prefix->log_prob_nb_prev);
|
||||
}
|
||||
// get new prefix
|
||||
auto prefix_new = prefix->get_path_trie(c);
|
||||
|
||||
if (prefix_new != nullptr) {
|
||||
float log_p = -NUM_FLT_INF;
|
||||
|
||||
if (c == prefix->character &&
|
||||
prefix->log_prob_b_prev > -NUM_FLT_INF) {
|
||||
log_p = log_prob_c + prefix->log_prob_b_prev;
|
||||
} else if (c != prefix->character) {
|
||||
log_p = log_prob_c + prefix->score;
|
||||
}
|
||||
|
||||
// language model scoring
|
||||
if (ext_scorer != nullptr &&
|
||||
(c == space_id || ext_scorer->is_character_based())) {
|
||||
PathTrie *prefix_to_score = nullptr;
|
||||
// skip scoring the space
|
||||
if (ext_scorer->is_character_based()) {
|
||||
prefix_to_score = prefix_new;
|
||||
} else {
|
||||
prefix_to_score = prefix;
|
||||
}
|
||||
|
||||
float score = 0.0;
|
||||
std::vector<std::string> ngram;
|
||||
ngram = ext_scorer->make_ngram(prefix_to_score);
|
||||
score = ext_scorer->get_log_cond_prob(ngram) *
|
||||
ext_scorer->alpha;
|
||||
log_p += score;
|
||||
log_p += ext_scorer->beta;
|
||||
}
|
||||
prefix_new->log_prob_nb_cur =
|
||||
log_sum_exp(prefix_new->log_prob_nb_cur, log_p);
|
||||
}
|
||||
} // end of loop over prefix
|
||||
} // end of loop over vocabulary
|
||||
|
||||
|
||||
prefixes.clear();
|
||||
// update log probs
|
||||
root.iterate_to_vec(prefixes);
|
||||
|
||||
// only preserve top beam_size prefixes
|
||||
if (prefixes.size() >= beam_size) {
|
||||
std::nth_element(prefixes.begin(),
|
||||
prefixes.begin() + beam_size,
|
||||
prefixes.end(),
|
||||
prefix_compare);
|
||||
for (size_t i = beam_size; i < prefixes.size(); ++i) {
|
||||
prefixes[i]->remove();
|
||||
}
|
||||
}
|
||||
} // end of loop over time
|
||||
|
||||
// score the last word of each prefix that doesn't end with space
|
||||
if (ext_scorer != nullptr && !ext_scorer->is_character_based()) {
|
||||
for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) {
|
||||
auto prefix = prefixes[i];
|
||||
if (!prefix->is_empty() && prefix->character != space_id) {
|
||||
float score = 0.0;
|
||||
std::vector<std::string> ngram = ext_scorer->make_ngram(prefix);
|
||||
score =
|
||||
ext_scorer->get_log_cond_prob(ngram) * ext_scorer->alpha;
|
||||
score += ext_scorer->beta;
|
||||
prefix->score += score;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t num_prefixes = std::min(prefixes.size(), beam_size);
|
||||
std::sort(
|
||||
prefixes.begin(), prefixes.begin() + num_prefixes, prefix_compare);
|
||||
|
||||
// compute aproximate ctc score as the return score, without affecting the
|
||||
// return order of decoding result. To delete when decoder gets stable.
|
||||
for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) {
|
||||
double approx_ctc = prefixes[i]->score;
|
||||
if (ext_scorer != nullptr) {
|
||||
std::vector<int> output;
|
||||
prefixes[i]->get_path_vec(output);
|
||||
auto prefix_length = output.size();
|
||||
auto words = ext_scorer->split_labels(output);
|
||||
// remove word insert
|
||||
approx_ctc = approx_ctc - prefix_length * ext_scorer->beta;
|
||||
// remove language model weight:
|
||||
approx_ctc -=
|
||||
(ext_scorer->get_sent_log_prob(words)) * ext_scorer->alpha;
|
||||
}
|
||||
prefixes[i]->approx_ctc = approx_ctc;
|
||||
}
|
||||
|
||||
return get_beam_search_result(prefixes, vocabulary, beam_size);
|
||||
}
|
||||
|
||||
|
||||
std::vector<std::vector<std::pair<double, std::string>>>
|
||||
ctc_beam_search_decoder_batch(
|
||||
const std::vector<std::vector<std::vector<double>>> &probs_split,
|
||||
const std::vector<std::string> &vocabulary,
|
||||
size_t beam_size,
|
||||
size_t num_processes,
|
||||
double cutoff_prob,
|
||||
size_t cutoff_top_n,
|
||||
Scorer *ext_scorer,
|
||||
size_t blank_id) {
|
||||
VALID_CHECK_GT(num_processes, 0, "num_processes must be nonnegative!");
|
||||
// thread pool
|
||||
ThreadPool pool(num_processes);
|
||||
// number of samples
|
||||
size_t batch_size = probs_split.size();
|
||||
|
||||
// enqueue the tasks of decoding
|
||||
std::vector<std::future<std::vector<std::pair<double, std::string>>>> res;
|
||||
for (size_t i = 0; i < batch_size; ++i) {
|
||||
res.emplace_back(pool.enqueue(ctc_beam_search_decoder,
|
||||
probs_split[i],
|
||||
vocabulary,
|
||||
beam_size,
|
||||
cutoff_prob,
|
||||
cutoff_top_n,
|
||||
ext_scorer,
|
||||
blank_id));
|
||||
}
|
||||
|
||||
// get decoding results
|
||||
std::vector<std::vector<std::pair<double, std::string>>> batch_results;
|
||||
for (size_t i = 0; i < batch_size; ++i) {
|
||||
batch_results.emplace_back(res[i].get());
|
||||
}
|
||||
return batch_results;
|
||||
}
|
@ -1,110 +0,0 @@
|
||||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef DECODER_UTILS_H_
|
||||
#define DECODER_UTILS_H_
|
||||
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include "fst/log.h"
|
||||
#include "path_trie.h"
|
||||
|
||||
const std::string kSPACE = "<space>";
|
||||
const float NUM_FLT_INF = std::numeric_limits<float>::max();
|
||||
const float NUM_FLT_MIN = std::numeric_limits<float>::min();
|
||||
|
||||
// inline function for validation check
|
||||
inline void check(
|
||||
bool x, const char *expr, const char *file, int line, const char *err) {
|
||||
if (!x) {
|
||||
std::cout << "[" << file << ":" << line << "] ";
|
||||
LOG(FATAL) << "\"" << expr << "\" check failed. " << err;
|
||||
}
|
||||
}
|
||||
|
||||
#define VALID_CHECK(x, info) \
|
||||
check(static_cast<bool>(x), #x, __FILE__, __LINE__, info)
|
||||
#define VALID_CHECK_EQ(x, y, info) VALID_CHECK((x) == (y), info)
|
||||
#define VALID_CHECK_GT(x, y, info) VALID_CHECK((x) > (y), info)
|
||||
#define VALID_CHECK_LT(x, y, info) VALID_CHECK((x) < (y), info)
|
||||
|
||||
|
||||
// Function template for comparing two pairs
|
||||
template <typename T1, typename T2>
|
||||
bool pair_comp_first_rev(const std::pair<T1, T2> &a,
|
||||
const std::pair<T1, T2> &b) {
|
||||
return a.first > b.first;
|
||||
}
|
||||
|
||||
// Function template for comparing two pairs
|
||||
template <typename T1, typename T2>
|
||||
bool pair_comp_second_rev(const std::pair<T1, T2> &a,
|
||||
const std::pair<T1, T2> &b) {
|
||||
return a.second > b.second;
|
||||
}
|
||||
|
||||
// Return the sum of two probabilities in log scale
|
||||
template <typename T>
|
||||
T log_sum_exp(const T &x, const T &y) {
|
||||
static T num_min = -std::numeric_limits<T>::max();
|
||||
if (x <= num_min) return y;
|
||||
if (y <= num_min) return x;
|
||||
T xmax = std::max(x, y);
|
||||
return std::log(std::exp(x - xmax) + std::exp(y - xmax)) + xmax;
|
||||
}
|
||||
|
||||
// Get pruned probability vector for each time step's beam search
|
||||
std::vector<std::pair<size_t, float>> get_pruned_log_probs(
|
||||
const std::vector<double> &prob_step,
|
||||
double cutoff_prob,
|
||||
size_t cutoff_top_n);
|
||||
|
||||
// Get beam search result from prefixes in trie tree
|
||||
std::vector<std::pair<double, std::string>> get_beam_search_result(
|
||||
const std::vector<PathTrie *> &prefixes,
|
||||
const std::vector<std::string> &vocabulary,
|
||||
size_t beam_size);
|
||||
|
||||
// Functor for prefix comparsion
|
||||
bool prefix_compare(const PathTrie *x, const PathTrie *y);
|
||||
|
||||
/* Get length of utf8 encoding string
|
||||
* See: http://stackoverflow.com/a/4063229
|
||||
*/
|
||||
size_t get_utf8_str_len(const std::string &str);
|
||||
|
||||
/* Split a string into a list of strings on a given string
|
||||
* delimiter. NB: delimiters on beginning / end of string are
|
||||
* trimmed. Eg, "FooBarFoo" split on "Foo" returns ["Bar"].
|
||||
*/
|
||||
std::vector<std::string> split_str(const std::string &s,
|
||||
const std::string &delim);
|
||||
|
||||
/* Splits string into vector of strings representing
|
||||
* UTF-8 characters (not same as chars)
|
||||
*/
|
||||
std::vector<std::string> split_utf8_str(const std::string &str);
|
||||
|
||||
// Add a word in index to the dicionary of fst
|
||||
void add_word_to_fst(const std::vector<int> &word,
|
||||
fst::StdVectorFst *dictionary);
|
||||
|
||||
// Add a word in string to dictionary
|
||||
bool add_word_to_dictionary(
|
||||
const std::string &word,
|
||||
const std::unordered_map<std::string, int> &char_map,
|
||||
bool add_space,
|
||||
int SPACE_ID,
|
||||
fst::StdVectorFst *dictionary);
|
||||
#endif // DECODER_UTILS_H
|
@ -1,244 +0,0 @@
|
||||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "scorer.h"
|
||||
|
||||
#include <unistd.h>
|
||||
#include <iostream>
|
||||
|
||||
#include "lm/config.hh"
|
||||
#include "lm/model.hh"
|
||||
#include "lm/state.hh"
|
||||
#include "util/string_piece.hh"
|
||||
#include "util/tokenize_piece.hh"
|
||||
|
||||
#include "decoder_utils.h"
|
||||
|
||||
using namespace lm::ngram;
|
||||
|
||||
Scorer::Scorer(double alpha,
|
||||
double beta,
|
||||
const std::string& lm_path,
|
||||
const std::vector<std::string>& vocab_list) {
|
||||
this->alpha = alpha;
|
||||
this->beta = beta;
|
||||
|
||||
dictionary = nullptr;
|
||||
is_character_based_ = true;
|
||||
language_model_ = nullptr;
|
||||
|
||||
max_order_ = 0;
|
||||
dict_size_ = 0;
|
||||
SPACE_ID_ = -1;
|
||||
|
||||
setup(lm_path, vocab_list);
|
||||
}
|
||||
|
||||
Scorer::~Scorer() {
|
||||
if (language_model_ != nullptr) {
|
||||
delete static_cast<lm::base::Model*>(language_model_);
|
||||
}
|
||||
if (dictionary != nullptr) {
|
||||
delete static_cast<fst::StdVectorFst*>(dictionary);
|
||||
}
|
||||
}
|
||||
|
||||
void Scorer::setup(const std::string& lm_path,
|
||||
const std::vector<std::string>& vocab_list) {
|
||||
// load language model
|
||||
load_lm(lm_path);
|
||||
// set char map for scorer
|
||||
set_char_map(vocab_list);
|
||||
// fill the dictionary for FST
|
||||
if (!is_character_based()) {
|
||||
fill_dictionary(true);
|
||||
}
|
||||
}
|
||||
|
||||
void Scorer::load_lm(const std::string& lm_path) {
|
||||
const char* filename = lm_path.c_str();
|
||||
VALID_CHECK_EQ(access(filename, F_OK), 0, "Invalid language model path");
|
||||
|
||||
RetriveStrEnumerateVocab enumerate;
|
||||
lm::ngram::Config config;
|
||||
config.enumerate_vocab = &enumerate;
|
||||
language_model_ = lm::ngram::LoadVirtual(filename, config);
|
||||
max_order_ = static_cast<lm::base::Model*>(language_model_)->Order();
|
||||
vocabulary_ = enumerate.vocabulary;
|
||||
for (size_t i = 0; i < vocabulary_.size(); ++i) {
|
||||
if (is_character_based_ && vocabulary_[i] != UNK_TOKEN &&
|
||||
vocabulary_[i] != START_TOKEN && vocabulary_[i] != END_TOKEN &&
|
||||
get_utf8_str_len(enumerate.vocabulary[i]) > 1) {
|
||||
is_character_based_ = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double Scorer::get_log_cond_prob(const std::vector<std::string>& words) {
|
||||
lm::base::Model* model = static_cast<lm::base::Model*>(language_model_);
|
||||
double cond_prob;
|
||||
lm::ngram::State state, tmp_state, out_state;
|
||||
// avoid to inserting <s> in begin
|
||||
model->NullContextWrite(&state);
|
||||
for (size_t i = 0; i < words.size(); ++i) {
|
||||
lm::WordIndex word_index = model->BaseVocabulary().Index(words[i]);
|
||||
// encounter OOV
|
||||
if (word_index == 0) {
|
||||
return OOV_SCORE;
|
||||
}
|
||||
cond_prob = model->BaseScore(&state, word_index, &out_state);
|
||||
tmp_state = state;
|
||||
state = out_state;
|
||||
out_state = tmp_state;
|
||||
}
|
||||
// return log10 prob
|
||||
return cond_prob;
|
||||
}
|
||||
|
||||
double Scorer::get_sent_log_prob(const std::vector<std::string>& words) {
|
||||
std::vector<std::string> sentence;
|
||||
if (words.size() == 0) {
|
||||
for (size_t i = 0; i < max_order_; ++i) {
|
||||
sentence.push_back(START_TOKEN);
|
||||
}
|
||||
} else {
|
||||
for (size_t i = 0; i < max_order_ - 1; ++i) {
|
||||
sentence.push_back(START_TOKEN);
|
||||
}
|
||||
sentence.insert(sentence.end(), words.begin(), words.end());
|
||||
}
|
||||
sentence.push_back(END_TOKEN);
|
||||
return get_log_prob(sentence);
|
||||
}
|
||||
|
||||
double Scorer::get_log_prob(const std::vector<std::string>& words) {
|
||||
assert(words.size() > max_order_);
|
||||
double score = 0.0;
|
||||
for (size_t i = 0; i < words.size() - max_order_ + 1; ++i) {
|
||||
std::vector<std::string> ngram(words.begin() + i,
|
||||
words.begin() + i + max_order_);
|
||||
score += get_log_cond_prob(ngram);
|
||||
}
|
||||
return score;
|
||||
}
|
||||
|
||||
void Scorer::reset_params(float alpha, float beta) {
|
||||
this->alpha = alpha;
|
||||
this->beta = beta;
|
||||
}
|
||||
|
||||
std::string Scorer::vec2str(const std::vector<int>& input) {
|
||||
std::string word;
|
||||
for (auto ind : input) {
|
||||
word += char_list_[ind];
|
||||
}
|
||||
return word;
|
||||
}
|
||||
|
||||
std::vector<std::string> Scorer::split_labels(const std::vector<int>& labels) {
|
||||
if (labels.empty()) return {};
|
||||
|
||||
std::string s = vec2str(labels);
|
||||
std::vector<std::string> words;
|
||||
if (is_character_based_) {
|
||||
words = split_utf8_str(s);
|
||||
} else {
|
||||
words = split_str(s, " ");
|
||||
}
|
||||
return words;
|
||||
}
|
||||
|
||||
void Scorer::set_char_map(const std::vector<std::string>& char_list) {
|
||||
char_list_ = char_list;
|
||||
char_map_.clear();
|
||||
|
||||
// Set the char map for the FST for spelling correction
|
||||
for (size_t i = 0; i < char_list_.size(); i++) {
|
||||
if (char_list_[i] == kSPACE) {
|
||||
SPACE_ID_ = i;
|
||||
}
|
||||
// The initial state of FST is state 0, hence the index of chars in
|
||||
// the FST should start from 1 to avoid the conflict with the initial
|
||||
// state, otherwise wrong decoding results would be given.
|
||||
char_map_[char_list_[i]] = i + 1;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::string> Scorer::make_ngram(PathTrie* prefix) {
|
||||
std::vector<std::string> ngram;
|
||||
PathTrie* current_node = prefix;
|
||||
PathTrie* new_node = nullptr;
|
||||
|
||||
for (int order = 0; order < max_order_; order++) {
|
||||
std::vector<int> prefix_vec;
|
||||
|
||||
if (is_character_based_) {
|
||||
new_node = current_node->get_path_vec(prefix_vec, SPACE_ID_, 1);
|
||||
current_node = new_node;
|
||||
} else {
|
||||
new_node = current_node->get_path_vec(prefix_vec, SPACE_ID_);
|
||||
current_node = new_node->parent; // Skipping spaces
|
||||
}
|
||||
|
||||
// reconstruct word
|
||||
std::string word = vec2str(prefix_vec);
|
||||
ngram.push_back(word);
|
||||
|
||||
if (new_node->character == -1) {
|
||||
// No more spaces, but still need order
|
||||
for (int i = 0; i < max_order_ - order - 1; i++) {
|
||||
ngram.push_back(START_TOKEN);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
std::reverse(ngram.begin(), ngram.end());
|
||||
return ngram;
|
||||
}
|
||||
|
||||
void Scorer::fill_dictionary(bool add_space) {
|
||||
fst::StdVectorFst dictionary;
|
||||
// For each unigram convert to ints and put in trie
|
||||
int dict_size = 0;
|
||||
for (const auto& word : vocabulary_) {
|
||||
bool added = add_word_to_dictionary(
|
||||
word, char_map_, add_space, SPACE_ID_ + 1, &dictionary);
|
||||
dict_size += added ? 1 : 0;
|
||||
}
|
||||
|
||||
dict_size_ = dict_size;
|
||||
|
||||
/* Simplify FST
|
||||
|
||||
* This gets rid of "epsilon" transitions in the FST.
|
||||
* These are transitions that don't require a string input to be taken.
|
||||
* Getting rid of them is necessary to make the FST determinisitc, but
|
||||
* can greatly increase the size of the FST
|
||||
*/
|
||||
fst::RmEpsilon(&dictionary);
|
||||
fst::StdVectorFst* new_dict = new fst::StdVectorFst;
|
||||
|
||||
/* This makes the FST deterministic, meaning for any string input there's
|
||||
* only one possible state the FST could be in. It is assumed our
|
||||
* dictionary is deterministic when using it.
|
||||
* (lest we'd have to check for multiple transitions at each state)
|
||||
*/
|
||||
fst::Determinize(dictionary, new_dict);
|
||||
|
||||
/* Finds the simplest equivalent fst. This is unnecessary but decreases
|
||||
* memory usage of the dictionary
|
||||
*/
|
||||
fst::Minimize(new_dict);
|
||||
this->dictionary = new_dict;
|
||||
}
|
@ -1,24 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
if [ ! -d kenlm ]; then
|
||||
git clone https://github.com/kpu/kenlm.git
|
||||
cd kenlm/
|
||||
git checkout df2d717e95183f79a90b2fa6e4307083a351ca6a
|
||||
cd ..
|
||||
echo -e "\n"
|
||||
fi
|
||||
|
||||
if [ ! -d openfst-1.6.3 ]; then
|
||||
echo "Download and extract openfst ..."
|
||||
wget http://www.openfst.org/twiki/pub/FST/FstDownload/openfst-1.6.3.tar.gz --no-check-certificate
|
||||
tar -xzvf openfst-1.6.3.tar.gz
|
||||
echo -e "\n"
|
||||
fi
|
||||
|
||||
if [ ! -d ThreadPool ]; then
|
||||
git clone https://github.com/progschj/ThreadPool.git
|
||||
echo -e "\n"
|
||||
fi
|
||||
|
||||
echo "Install decoders ..."
|
||||
python3 setup.py install --num_processes 4
|
Loading…
Reference in new issue