Fixed a serious mistake of bidirectional simple rnn for DS2.

pull/2/head
Xinghai Sun 7 years ago
parent 638fae13f4
commit 1d163ad15f

@ -1,6 +1,6 @@
TRAIN_MANIFEST="cloud/cloud.manifest.train"
DEV_MANIFEST="cloud/cloud.manifest.dev"
CLOUD_MODEL_DIR="/pfs/dlnel/home/USERNAME/deepspeech2/model"
CLOUD_MODEL_DIR="./checkpoints"
BATCH_SIZE=256
NUM_GPU=8
NUM_NODE=1
@ -11,7 +11,7 @@ DS2_PATH=${PWD%/*}
cp -f pcloud_train.sh ${DS2_PATH}
paddlecloud submit \
-image bootstrapper:5000/wanghaoshuang/pcloud_ds2:latest \
-image bootstrapper:5000/paddlepaddle/pcloud_ds2:latest \
-jobname ${JOB_NAME} \
-cpu ${NUM_GPU} \
-gpu ${NUM_GPU} \

@ -55,16 +55,20 @@ def bidirectional_simple_rnn_bn_layer(name, input, size, act):
:rtype: LayerOutput
"""
# input-hidden weights shared across bi-direcitonal rnn.
input_proj = paddle.layer.fc(
input_proj_forward = paddle.layer.fc(
input=input, size=size, act=paddle.activation.Linear(), bias_attr=False)
# batch norm is only performed on input-state projection
input_proj_bn = paddle.layer.batch_norm(
input=input_proj, act=paddle.activation.Linear())
input_proj_backward = paddle.layer.fc(
input=input, size=size, act=paddle.activation.Linear(), bias_attr=False)
# batch norm is only performed on input-state projection
input_proj_bn_forward = paddle.layer.batch_norm(
input=input_proj_forward, act=paddle.activation.Linear())
input_proj_bn_backward = paddle.layer.batch_norm(
input=input_proj_backward, act=paddle.activation.Linear())
# forward and backward in time
forward_simple_rnn = paddle.layer.recurrent(
input=input_proj_bn, act=act, reverse=False)
input=input_proj_bn_forward, act=act, reverse=False)
backward_simple_rnn = paddle.layer.recurrent(
input=input_proj_bn, act=act, reverse=True)
input=input_proj_bn_backward, act=act, reverse=True)
return paddle.layer.concat(input=[forward_simple_rnn, backward_simple_rnn])

Loading…
Cancel
Save