|
|
|
@ -55,16 +55,20 @@ def bidirectional_simple_rnn_bn_layer(name, input, size, act):
|
|
|
|
|
:rtype: LayerOutput
|
|
|
|
|
"""
|
|
|
|
|
# input-hidden weights shared across bi-direcitonal rnn.
|
|
|
|
|
input_proj = paddle.layer.fc(
|
|
|
|
|
input_proj_forward = paddle.layer.fc(
|
|
|
|
|
input=input, size=size, act=paddle.activation.Linear(), bias_attr=False)
|
|
|
|
|
# batch norm is only performed on input-state projection
|
|
|
|
|
input_proj_bn = paddle.layer.batch_norm(
|
|
|
|
|
input=input_proj, act=paddle.activation.Linear())
|
|
|
|
|
input_proj_backward = paddle.layer.fc(
|
|
|
|
|
input=input, size=size, act=paddle.activation.Linear(), bias_attr=False)
|
|
|
|
|
# batch norm is only performed on input-state projection
|
|
|
|
|
input_proj_bn_forward = paddle.layer.batch_norm(
|
|
|
|
|
input=input_proj_forward, act=paddle.activation.Linear())
|
|
|
|
|
input_proj_bn_backward = paddle.layer.batch_norm(
|
|
|
|
|
input=input_proj_backward, act=paddle.activation.Linear())
|
|
|
|
|
# forward and backward in time
|
|
|
|
|
forward_simple_rnn = paddle.layer.recurrent(
|
|
|
|
|
input=input_proj_bn, act=act, reverse=False)
|
|
|
|
|
input=input_proj_bn_forward, act=act, reverse=False)
|
|
|
|
|
backward_simple_rnn = paddle.layer.recurrent(
|
|
|
|
|
input=input_proj_bn, act=act, reverse=True)
|
|
|
|
|
input=input_proj_bn_backward, act=act, reverse=True)
|
|
|
|
|
return paddle.layer.concat(input=[forward_simple_rnn, backward_simple_rnn])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|