speedyspeech code adapt for npu (#3804)

* speedyspeech code adapt for npu

* fix npu inference

* fix e2e synthesize

* add paddle version control for memory optim config

* fix code style

* fix code style

* fix help message

* fix code style

* fix help message
pull/3830/head
zhuyipin 3 months ago committed by GitHub
parent d615fc33de
commit 0b568136d9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -0,0 +1,46 @@
#!/bin/bash
train_output_path=$1
stage=0
stop_stage=0
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
python3 ${BIN_DIR}/../inference.py \
--inference_dir=${train_output_path}/inference \
--am=speedyspeech_csmsc \
--voc=pwgan_csmsc \
--text=${BIN_DIR}/../../assets/sentences.txt \
--output_dir=${train_output_path}/pd_infer_out \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--device npu
fi
# for more GAN Vocoders
# multi band melgan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
python3 ${BIN_DIR}/../inference.py \
--inference_dir=${train_output_path}/inference \
--am=speedyspeech_csmsc \
--voc=mb_melgan_csmsc \
--text=${BIN_DIR}/../../assets/sentences.txt \
--output_dir=${train_output_path}/pd_infer_out \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--device npu
fi
# hifigan
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
python3 ${BIN_DIR}/../inference.py \
--inference_dir=${train_output_path}/inference \
--am=speedyspeech_csmsc \
--voc=hifigan_csmsc \
--text=${BIN_DIR}/../../assets/sentences.txt \
--output_dir=${train_output_path}/pd_infer_out \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--device npu
fi

@ -0,0 +1,124 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/feats_stats.npy \
--voc=pwgan_csmsc \
--voc_config=pwg_baker_ckpt_0.4/pwg_default.yaml \
--voc_ckpt=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_baker_ckpt_0.4/pwg_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../../assets/sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--inference_dir=${train_output_path}/inference \
--ngpu=0 \
--nnpu=1
fi
# for more GAN Vocoders
# multi band melgan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
FLAGS_allocator_strategy=naive_best_fit \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/feats_stats.npy \
--voc=mb_melgan_csmsc \
--voc_config=mb_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=mb_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1000000.pdz\
--voc_stat=mb_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../../assets/sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--inference_dir=${train_output_path}/inference \
--ngpu=0 \
--nnpu=1
fi
# the pretrained models haven't release now
# style melgan
# style melgan's Dygraph to Static Graph is not ready now
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
FLAGS_allocator_strategy=naive_best_fit \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/feats_stats.npy \
--voc=style_melgan_csmsc \
--voc_config=style_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=style_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1500000.pdz \
--voc_stat=style_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../../assets/sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--ngpu=0 \
--nnpu=1
# --inference_dir=${train_output_path}/inference
fi
# hifigan
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
FLAGS_allocator_strategy=naive_best_fit \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/feats_stats.npy \
--voc=hifigan_csmsc \
--voc_config=hifigan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=hifigan_csmsc_ckpt_0.1.1/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../../assets/sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--inference_dir=${train_output_path}/inference \
--ngpu=0 \
--nnpu=1
fi
# wavernn
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "in wavernn syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/feats_stats.npy \
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../../assets/sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--inference_dir=${train_output_path}/inference \
--ngpu=0 \
--nnpu=1
fi

@ -0,0 +1,110 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
python3 ${BIN_DIR}/../synthesize.py \
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/feats_stats.npy \
--voc=pwgan_csmsc \
--voc_config=pwg_baker_ckpt_0.4/pwg_default.yaml \
--voc_ckpt=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_baker_ckpt_0.4/pwg_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--ngpu=0 \
--nnpu=1
fi
# for more GAN Vocoders
# multi band melgan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
FLAGS_allocator_strategy=naive_best_fit \
python3 ${BIN_DIR}/../synthesize.py \
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/feats_stats.npy \
--voc=mb_melgan_csmsc \
--voc_config=mb_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=mb_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1000000.pdz\
--voc_stat=mb_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--ngpu=0 \
--nnpu=1
fi
# style melgan
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
FLAGS_allocator_strategy=naive_best_fit \
python3 ${BIN_DIR}/../synthesize.py \
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/feats_stats.npy \
--voc=style_melgan_csmsc \
--voc_config=style_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=style_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1500000.pdz \
--voc_stat=style_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--ngpu=0 \
--nnpu=1
fi
# hifigan
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "in hifigan syn"
FLAGS_allocator_strategy=naive_best_fit \
python3 ${BIN_DIR}/../synthesize.py \
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/feats_stats.npy \
--voc=hifigan_csmsc \
--voc_config=hifigan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=hifigan_csmsc_ckpt_0.1.1/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_csmsc_ckpt_0.1.1/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--ngpu=0 \
--nnpu=1
fi
# wavernn
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "in wavernn syn"
FLAGS_allocator_strategy=naive_best_fit \
python3 ${BIN_DIR}/../synthesize.py \
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/feats_stats.npy \
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--tones_dict=dump/tone_id_map.txt \
--phones_dict=dump/phone_id_map.txt \
--ngpu=0 \
--nnpu=1
fi

@ -0,0 +1,16 @@
#!/bin/bash
config_path=$1
train_output_path=$2
python ${BIN_DIR}/train.py \
--train-metadata=dump/train/norm/metadata.jsonl \
--dev-metadata=dump/dev/norm/metadata.jsonl \
--config=${config_path} \
--output-dir=${train_output_path} \
--ngpu=0 \
--nnpu=1 \
--phones-dict=dump/phone_id_map.txt \
--tones-dict=dump/tone_id_map.txt \
--use-relative-path=True

@ -0,0 +1,42 @@
#!/bin/bash
set -e
source path.sh
npus=0
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_76.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run_xpu.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
./local/preprocess.sh ${conf_path} || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
FLAGS_selected_npus=${npus} ./local/train_npu.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize, vocoder is pwgan by default
FLAGS_selected_npus=${npus} ./local/synthesize_npu.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# synthesize_e2e, vocoder is pwgan by default
FLAGS_selected_npus=${npus} ./local/synthesize_e2e_npu.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# inference with static model
FLAGS_selected_npus=${npus} ./local/inference_npu.sh ${train_output_path} || exit -1
fi

@ -112,7 +112,7 @@ def parse_args():
parser.add_argument(
"--device",
default="gpu",
choices=["gpu", "cpu", "xpu"],
choices=["gpu", "cpu", "xpu", "npu"],
help="Device selected for inference.", )
parser.add_argument('--cpu_threads', type=int, default=1)

@ -45,15 +45,18 @@ def train_sp(args, config):
# decides device type and whether to run in parallel
# setup running environment correctly
world_size = paddle.distributed.get_world_size()
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
if (not paddle.is_compiled_with_xpu()) or args.nxpu == 0:
paddle.set_device("cpu")
else:
paddle.set_device("xpu")
else:
if paddle.is_compiled_with_cuda() and args.ngpu > 0:
paddle.set_device("gpu")
if world_size > 1:
paddle.distributed.init_parallel_env()
elif paddle.is_compiled_with_xpu() and args.nxpu > 0:
paddle.device.set_device("xpu")
elif args.nnpu > 0:
paddle.device.set_device("npu")
if world_size > 1:
paddle.distributed.init_parallel_env()
else:
paddle.set_device("cpu")
# set the random seed, it is a must for multiprocess training
seed_everything(config.seed)
@ -191,9 +194,19 @@ def main():
"--nxpu",
type=int,
default=0,
help="if nxpu == 0 and ngpu == 0, use cpu.")
help="if wish to use xpu, set ngpu == 0 and nxpu > 0, otherwise use gpu, npu or cpu."
)
parser.add_argument(
"--nnpu",
type=int,
default=0,
help="if wish to use npu, set ngpu == 0 and nnpu > 0, otherwise use gpu, xpu or cpu."
)
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu or xpu")
"--ngpu",
type=int,
default=1,
help="if wish to use gpu, set ngpu > 0, otherwise use xpu, npu or cpu.")
parser.add_argument(
"--use-relative-path",

@ -591,7 +591,8 @@ def get_predictor(
config = inference.Config(
str(Path(model_dir) / model_file), str(Path(model_dir) / params_file))
config.enable_memory_optim()
if paddle.__version__ <= "2.5.2" and paddle.__version__ != "0.0.0":
config.enable_memory_optim()
config.switch_ir_optim(True)
if device == "gpu":
config.enable_use_gpu(100, device_id)

@ -219,12 +219,21 @@ def parse_args():
)
# other
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu or xpu.")
"--ngpu",
type=int,
default=1,
help="if wish to use gpu, set ngpu > 0, otherwise use xpu, npu or cpu.")
parser.add_argument(
"--nxpu",
type=int,
default=0,
help="if wish to use xpu, set ngpu == 0 and nxpu > 0, and if ngpu == 0 and nxpu == 0, use cpu."
help="if wish to use xpu, set ngpu == 0 and nxpu > 0, otherwise use gpu, npu or cpu."
)
parser.add_argument(
"--nnpu",
type=int,
default=0,
help="if wish to use npu, set ngpu == 0 and nnpu > 0, otherwise use gpu, xpu or cpu."
)
parser.add_argument("--test_metadata", type=str, help="test metadata.")
parser.add_argument("--output_dir", type=str, help="output dir.")
@ -245,10 +254,12 @@ def main():
paddle.set_device("gpu")
elif args.nxpu > 0:
paddle.set_device("xpu")
elif args.ngpu == 0 and args.nxpu == 0:
elif args.nnpu > 0:
paddle.set_device("npu")
elif args.ngpu == 0 and args.nxpu == 0 and args.nnpu == 0:
paddle.set_device("cpu")
else:
print("ngpu or nxpu should >= 0 !")
print("ngpu, nxpu and nnpu should be >= 0")
evaluate(args)

@ -299,12 +299,21 @@ def parse_args():
default=None,
help="dir to save inference models")
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu or xpu.")
"--ngpu",
type=int,
default=1,
help="if wish to use gpu, set ngpu > 0, otherwise use xpu, npu or cpu.")
parser.add_argument(
"--nxpu",
type=int,
default=0,
help="if wish to use xpu, set ngpu == 0 and nxpu > 0, and if ngpu == 0 and nxpu == 0, use cpu."
help="if wish to use xpu, set ngpu == 0 and nxpu > 0, otherwise use gpu, npu or cpu."
)
parser.add_argument(
"--nnpu",
type=int,
default=0,
help="if wish to use npu, set ngpu == 0 and nnpu > 0, otherwise use gpu, xpu or cpu."
)
parser.add_argument(
"--text",
@ -339,10 +348,12 @@ def main():
paddle.set_device("gpu")
elif args.nxpu > 0:
paddle.set_device("xpu")
elif args.ngpu == 0 and args.nxpu == 0:
elif args.nnpu > 0:
paddle.set_device("npu")
elif args.ngpu == 0 and args.nxpu == 0 or args.nnpu == 0:
paddle.set_device("cpu")
else:
print("ngpu or nxpu should >= 0 !")
print("ngpu, nxpu and nnpu should be >= 0")
evaluate(args)

Loading…
Cancel
Save