diff --git a/demos/streaming_tts_serving_fastdeploy/README.md b/demos/streaming_tts_serving_fastdeploy/README.md index 5990b18da..3e983a06d 100644 --- a/demos/streaming_tts_serving_fastdeploy/README.md +++ b/demos/streaming_tts_serving_fastdeploy/README.md @@ -7,54 +7,61 @@ This demo is an implementation of starting the streaming speech synthesis servic `Server` must be started in the docker, while `Client` does not have to be in the docker. -We assume your model and code (which will be loaded by the `Server`) absolute path in your host is `$PWD` and the model absolute path in docker is `/models` +**The streaming_tts_serving under the path of this article ($PWD) contains the configuration and code of the model, which needs to be mapped to the docker for use.** ## Usage ### 1. Server #### 1.1 Docker -`docker pull registry.baidubce.com/paddlepaddle/fastdeploy_serving_cpu_only:22.09` - -`docker run -dit --net=host --name fastdeploy --shm-size="1g" -v $PWD:/models registry.baidubce.com/paddlepaddle/fastdeploy_serving_cpu_only:22.09` - -`docker exec -it -u root fastdeploy bash` +```bash +docker pull registry.baidubce.com/paddlepaddle/fastdeploy_serving_cpu_only:22.09 +docker run -dit --net=host --name fastdeploy --shm-size="1g" -v $PWD:/models registry.baidubce.com/paddlepaddle/fastdeploy_serving_cpu_only:22.09 +docker exec -it -u root fastdeploy bash +``` #### 1.2 Installation(inside the docker) - -`apt-get install build-essential python3-dev libssl-dev libffi-dev libxml2 libxml2-dev libxslt1-dev zlib1g-dev libsndfile1 language-pack-zh-hans wget zip` - -`pip3 install paddlespeech` - -`export LC_ALL="zh_CN.UTF-8"` - -`export LANG="zh_CN.UTF-8"` - -`export LANGUAGE="zh_CN:zh:en_US:en"` +```bash +apt-get install build-essential python3-dev libssl-dev libffi-dev libxml2 libxml2-dev libxslt1-dev zlib1g-dev libsndfile1 language-pack-zh-hans wget zip +pip3 install paddlespeech +export LC_ALL="zh_CN.UTF-8" +export LANG="zh_CN.UTF-8" +export LANGUAGE="zh_CN:zh:en_US:en" +``` #### 1.3 Download models(inside the docker) - -`cd /models/streaming_tts_serving/1` - -`wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0.zip` - -`wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_onnx_0.2.0.zip` - -`unzip fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0.zip` - -`unzip mb_melgan_csmsc_onnx_0.2.0.zip` +```bash +cd /models/streaming_tts_serving/1 +wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0.zip +wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_onnx_0.2.0.zip +unzip fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0.zip +unzip mb_melgan_csmsc_onnx_0.2.0.zip +``` +**For the convenience of users, we recommend that you use the command `docker -v` to map $PWD (streaming_tts_service and the configuration and code of the model contained therein) to the docker path `/models`. You can also use other methods, but regardless of which method you use, the final model directory and structure in the docker are shown in the following figure.** + +

+ +

#### 1.4 Start the server(inside the docker) -`fastdeployserver --model-repository=/models --model-control-mode=explicit --load-model=streaming_tts_serving` - -**The default port is 8000(for http),8001(for grpc),8002(for metrics). If you want to change the port, add the command `--http-port 9000 --grpc-port 9001 --metrics-port 9002`** +```bash +fastdeployserver --model-repository=/models --model-control-mode=explicit --load-model=streaming_tts_serving +``` +Arguments: + - `model-repository`(required): Path of model storage. + - `model-control-mode`(required): The mode of loading the model. At present, you can use 'explicit'. + - `load-model`(required): Name of the model to be loaded. + - `http-port`(optional): Port for http service. Default: `8000`. This is not used in our example. + - `grpc-port`(optional): Port for grpc service. Default: `8001`. + - `metrics-port`(optional): Port for metrics service. Default: `8002`. This is not used in our example. ### 2. Client #### 2.1 Installation - -`pip3 install tritonclient[all]` +```bash +pip3 install tritonclient[all] +``` #### 2.2 Send request - -`python3 /models/streaming_tts_serving/stream_client.py` - +```bash +python3 /models/streaming_tts_serving/stream_client.py +``` diff --git a/demos/streaming_tts_serving_fastdeploy/README_cn.md b/demos/streaming_tts_serving_fastdeploy/README_cn.md index 92019040b..7edd32830 100644 --- a/demos/streaming_tts_serving_fastdeploy/README_cn.md +++ b/demos/streaming_tts_serving_fastdeploy/README_cn.md @@ -3,58 +3,65 @@ # 流式语音合成服务 ## 介绍 + 本文介绍了使用FastDeploy搭建流式语音合成服务的方法。 `服务端`必须在docker内启动,而`客户端`不是必须在docker容器内. -我们假设你的模型和代码(`服务端`会加载模型和代码以启动服务)在你主机上的绝对路径是`$PWD`,模型和代码在docker内的绝对路径是`/models` +**本文所在路径`($PWD)下的streaming_tts_serving里包含模型的配置和代码`(服务端会加载模型和代码以启动服务),需要将其映射到docker中使用。** ## 使用 ### 1. 服务端 #### 1.1 Docker - -`docker pull registry.baidubce.com/paddlepaddle/fastdeploy_serving_cpu_only:22.09` - -`docker run -dit --net=host --name fastdeploy --shm-size="1g" -v $PWD:/models registry.baidubce.com/paddlepaddle/fastdeploy_serving_cpu_only:22.09` - -`docker exec -it -u root fastdeploy bash` +```bash +docker pull registry.baidubce.com/paddlepaddle/fastdeploy_serving_cpu_only:22.09 +docker run -dit --net=host --name fastdeploy --shm-size="1g" -v $PWD:/models registry.baidubce.com/paddlepaddle/fastdeploy_serving_cpu_only:22.09 +docker exec -it -u root fastdeploy bash +``` #### 1.2 安装(在docker内) - -`apt-get install build-essential python3-dev libssl-dev libffi-dev libxml2 libxml2-dev libxslt1-dev zlib1g-dev libsndfile1 language-pack-zh-hans wget zip` - -`pip3 install paddlespeech` - -`export LC_ALL="zh_CN.UTF-8"` - -`export LANG="zh_CN.UTF-8"` - -`export LANGUAGE="zh_CN:zh:en_US:en"` +```bash +apt-get install build-essential python3-dev libssl-dev libffi-dev libxml2 libxml2-dev libxslt1-dev zlib1g-dev libsndfile1 language-pack-zh-hans wget zip +pip3 install paddlespeech +export LC_ALL="zh_CN.UTF-8" +export LANG="zh_CN.UTF-8" +export LANGUAGE="zh_CN:zh:en_US:en" +``` #### 1.3 下载模型(在docker内) - -`cd /models/streaming_tts_serving/1` - -`wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0.zip` - -`wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_onnx_0.2.0.zip` - -`unzip fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0.zip` - -`unzip mb_melgan_csmsc_onnx_0.2.0.zip` +```bash +cd /models/streaming_tts_serving/1 +wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0.zip +wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_onnx_0.2.0.zip +unzip fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0.zip +unzip mb_melgan_csmsc_onnx_0.2.0.zip +``` +**为了方便用户使用,我们推荐用户使用1.1中的`docker -v`命令将`$PWD(streaming_tts_serving及里面包含的模型的配置和代码)映射到了docker内的/models路径`,用户也可以使用其他办法,但无论使用哪种方法,最终在docker内的模型目录及结构如下图所示。** + +

+ +

#### 1.4 启动服务端(在docker内) - -`fastdeployserver --model-repository=/models --model-control-mode=explicit --load-model=streaming_tts_serving` - -**服务启动的默认端口是8000(for http),8001(for grpc),8002(for metrics). 如果想要改变服务的端口号,在上述命令后面添加以下参数即可`--http-port 9000 --grpc-port 9001 --metrics-port 9002`** +```bash +fastdeployserver --model-repository=/models --model-control-mode=explicit --load-model=streaming_tts_serving +``` + +参数: + - `model-repository`(required): 整套模型streaming_tts_serving存放的路径. + - `model-control-mode`(required): 模型加载的方式,现阶段, 使用'explicit'即可. + - `load-model`(required): 需要加载的模型的名称. + - `http-port`(optional): HTTP服务的端口号. 默认: `8000`. 本示例中未使用该端口. + - `grpc-port`(optional): GRPC服务的端口号. 默认: `8001`. + - `metrics-port`(optional): 服务端指标的端口号. 默认: `8002`. 本示例中未使用该端口. ### 2. 客户端 #### 2.1 安装 - -`pip3 install tritonclient[all]` +```bash +pip3 install tritonclient[all] +``` #### 2.2 发送请求 - -`python3 /models/streaming_tts_serving/stream_client.py` - +```bash +python3 /models/streaming_tts_serving/stream_client.py +``` diff --git a/demos/streaming_tts_serving_fastdeploy/streaming_tts_serving/1/model.py b/demos/streaming_tts_serving_fastdeploy/streaming_tts_serving/1/model.py index f165bf287..46473fdb2 100644 --- a/demos/streaming_tts_serving_fastdeploy/streaming_tts_serving/1/model.py +++ b/demos/streaming_tts_serving_fastdeploy/streaming_tts_serving/1/model.py @@ -20,7 +20,7 @@ am_pad = 12 voc_upsample = 300 # 模型路径 -dir_name = "/models/streaming_tts_serving/1" +dir_name = "/models/streaming_tts_serving/1/" phones_dict = dir_name + "fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0/phone_id_map.txt" am_stat_path = dir_name + "fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0/speech_stats.npy" diff --git a/demos/streaming_tts_serving_fastdeploy/streaming_tts_serving/stream_client.py b/demos/streaming_tts_serving_fastdeploy/streaming_tts_serving/stream_client.py index 0d36eaaf9..e7f120b7d 100644 --- a/demos/streaming_tts_serving_fastdeploy/streaming_tts_serving/stream_client.py +++ b/demos/streaming_tts_serving_fastdeploy/streaming_tts_serving/stream_client.py @@ -74,7 +74,6 @@ if __name__ == '__main__': values = ["哈哈哈哈"] request_id = "0" - #string_sequence_id0 = str(uuid.uuid4()) string_result0_list = [] @@ -111,7 +110,7 @@ if __name__ == '__main__': status = data_item.as_numpy('status') print('sub_wav = ', sub_wav, "subwav.shape = ", sub_wav.shape) print('status = ', status) - if status[0] is True: + if status[0] == 1: break recv_count += 1