|
|
|
@ -13,17 +13,25 @@
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
import argparse
|
|
|
|
|
import os
|
|
|
|
|
import sys
|
|
|
|
|
from typing import List
|
|
|
|
|
from typing import Optional
|
|
|
|
|
from typing import Union
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
import soundfile
|
|
|
|
|
|
|
|
|
|
from ..executor import BaseExecutor
|
|
|
|
|
from ..utils import cli_register
|
|
|
|
|
from ..utils import download_and_decompress
|
|
|
|
|
from ..utils import logger
|
|
|
|
|
from ..utils import MODEL_HOME
|
|
|
|
|
from paddlespeech.s2t.exps.u2.config import get_cfg_defaults
|
|
|
|
|
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
|
|
|
|
from paddlespeech.s2t.io.collator import SpeechCollator
|
|
|
|
|
from paddlespeech.s2t.transform.transformation import Transformation
|
|
|
|
|
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
|
|
|
|
|
from paddlespeech.s2t.utils.utility import UpdateConfig
|
|
|
|
|
|
|
|
|
|
__all__ = ['S2TExecutor']
|
|
|
|
|
|
|
|
|
@ -33,9 +41,21 @@ pretrained_models = {
|
|
|
|
|
'https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/conformer.model.tar.gz',
|
|
|
|
|
'md5':
|
|
|
|
|
'54e7a558a6e020c2f5fb224874943f97',
|
|
|
|
|
'cfg_path':
|
|
|
|
|
'conf/conformer.yaml',
|
|
|
|
|
'ckpt_path':
|
|
|
|
|
'exp/conformer/checkpoints/wenetspeech',
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
model_alias = {
|
|
|
|
|
"ds2_offline": "paddlespeech.s2t.models.ds2:DeepSpeech2Model",
|
|
|
|
|
"ds2_online": "paddlespeech.s2t.models.ds2_online:DeepSpeech2ModelOnline",
|
|
|
|
|
"conformer": "paddlespeech.s2t.models.u2:U2Model",
|
|
|
|
|
"transformer": "paddlespeech.s2t.models.u2:U2Model",
|
|
|
|
|
"wenetspeech": "paddlespeech.s2t.models.u2:U2Model",
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@cli_register(
|
|
|
|
|
name='paddlespeech.s2t', description='Speech to text infer command.')
|
|
|
|
@ -63,7 +83,9 @@ class S2TExecutor(BaseExecutor):
|
|
|
|
|
default=None,
|
|
|
|
|
help='Checkpoint file of model.')
|
|
|
|
|
self.parser.add_argument(
|
|
|
|
|
'--input', type=str, help='Audio file to recognize.')
|
|
|
|
|
'--input',
|
|
|
|
|
type=str,
|
|
|
|
|
help='Audio file to recognize.')
|
|
|
|
|
self.parser.add_argument(
|
|
|
|
|
'--device',
|
|
|
|
|
type=str,
|
|
|
|
@ -80,8 +102,10 @@ class S2TExecutor(BaseExecutor):
|
|
|
|
|
res_path = os.path.join(MODEL_HOME, tag)
|
|
|
|
|
decompressed_path = download_and_decompress(pretrained_models[tag],
|
|
|
|
|
res_path)
|
|
|
|
|
decompressed_path = os.path.abspath(decompressed_path)
|
|
|
|
|
logger.info(
|
|
|
|
|
'Use pretrained model stored in: {}'.format(decompressed_path))
|
|
|
|
|
|
|
|
|
|
return decompressed_path
|
|
|
|
|
|
|
|
|
|
def _init_from_path(self,
|
|
|
|
@ -93,51 +117,187 @@ class S2TExecutor(BaseExecutor):
|
|
|
|
|
Init model and other resources from a specific path.
|
|
|
|
|
"""
|
|
|
|
|
if cfg_path is None or ckpt_path is None:
|
|
|
|
|
res_path = self._get_pretrained_path(
|
|
|
|
|
model_type + '_' + lang) # wenetspeech_zh
|
|
|
|
|
cfg_path = os.path.join(res_path, 'conf/conformer.yaml')
|
|
|
|
|
ckpt_path = os.path.join(
|
|
|
|
|
res_path, 'exp/conformer/checkpoints/wenetspeech.pdparams')
|
|
|
|
|
tag = model_type + '_' + lang
|
|
|
|
|
res_path = self._get_pretrained_path(tag) # wenetspeech_zh
|
|
|
|
|
self.cfg_path = os.path.join(res_path,
|
|
|
|
|
pretrained_models[tag]['cfg_path'])
|
|
|
|
|
self.ckpt_path = os.path.join(res_path,
|
|
|
|
|
pretrained_models[tag]['ckpt_path'])
|
|
|
|
|
logger.info(res_path)
|
|
|
|
|
logger.info(cfg_path)
|
|
|
|
|
logger.info(ckpt_path)
|
|
|
|
|
logger.info(self.cfg_path)
|
|
|
|
|
logger.info(self.ckpt_path)
|
|
|
|
|
else:
|
|
|
|
|
self.cfg_path = os.path.abspath(cfg_path)
|
|
|
|
|
self.ckpt_path = os.path.abspath(ckpt_path)
|
|
|
|
|
res_path = os.path.dirname(
|
|
|
|
|
os.path.dirname(os.path.abspath(self.cfg_path)))
|
|
|
|
|
|
|
|
|
|
# Init body.
|
|
|
|
|
pass
|
|
|
|
|
# Enter the path of model root
|
|
|
|
|
os.chdir(res_path)
|
|
|
|
|
|
|
|
|
|
#Init body.
|
|
|
|
|
parser_args = self.parser_args
|
|
|
|
|
paddle.set_device(parser_args.device)
|
|
|
|
|
self.config = get_cfg_defaults()
|
|
|
|
|
self.config.merge_from_file(self.cfg_path)
|
|
|
|
|
self.config.decoding.decoding_method = "attention_rescoring"
|
|
|
|
|
#self.config.freeze()
|
|
|
|
|
model_conf = self.config.model
|
|
|
|
|
logger.info(model_conf)
|
|
|
|
|
|
|
|
|
|
with UpdateConfig(model_conf):
|
|
|
|
|
if parser_args.model == "ds2_online" or parser_args.model == "ds2_offline":
|
|
|
|
|
self.config.collator.vocab_filepath = os.path.join(
|
|
|
|
|
res_path, self.config.collator.vocab_filepath)
|
|
|
|
|
self.config.collator.vocab_filepath = os.path.join(
|
|
|
|
|
res_path, self.config.collator.cmvn_path)
|
|
|
|
|
self.collate_fn_test = SpeechCollator.from_config(self.config)
|
|
|
|
|
model_conf.feat_size = self.collate_fn_test.feature_size
|
|
|
|
|
model_conf.dict_size = self.text_feature.vocab_size
|
|
|
|
|
elif parser_args.model == "conformer" or parser_args.model == "transformer" or parser_args.model == "wenetspeech":
|
|
|
|
|
self.config.collator.vocab_filepath = os.path.join(
|
|
|
|
|
res_path, self.config.collator.vocab_filepath)
|
|
|
|
|
self.text_feature = TextFeaturizer(
|
|
|
|
|
unit_type=self.config.collator.unit_type,
|
|
|
|
|
vocab_filepath=self.config.collator.vocab_filepath,
|
|
|
|
|
spm_model_prefix=self.config.collator.spm_model_prefix)
|
|
|
|
|
model_conf.input_dim = self.config.collator.feat_dim
|
|
|
|
|
model_conf.output_dim = self.text_feature.vocab_size
|
|
|
|
|
else:
|
|
|
|
|
raise Exception("wrong type")
|
|
|
|
|
model_class = dynamic_import(parser_args.model, model_alias)
|
|
|
|
|
model = model_class.from_config(model_conf)
|
|
|
|
|
self.model = model
|
|
|
|
|
self.model.eval()
|
|
|
|
|
|
|
|
|
|
# load model
|
|
|
|
|
params_path = self.ckpt_path + ".pdparams"
|
|
|
|
|
model_dict = paddle.load(params_path)
|
|
|
|
|
self.model.set_state_dict(model_dict)
|
|
|
|
|
|
|
|
|
|
def preprocess(self, input: Union[str, os.PathLike]):
|
|
|
|
|
"""
|
|
|
|
|
Input preprocess and return paddle.Tensor stored in self.input.
|
|
|
|
|
Input content can be a text(t2s), a file(s2t, cls) or a streaming(not supported yet).
|
|
|
|
|
"""
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
parser_args = self.parser_args
|
|
|
|
|
config = self.config
|
|
|
|
|
audio_file = input
|
|
|
|
|
#print("audio_file", audio_file)
|
|
|
|
|
logger.info("audio_file" + audio_file)
|
|
|
|
|
|
|
|
|
|
self.sr = config.collator.target_sample_rate
|
|
|
|
|
|
|
|
|
|
# Get the object for feature extraction
|
|
|
|
|
if parser_args.model == "ds2_online" or parser_args.model == "ds2_offline":
|
|
|
|
|
audio, _ = collate_fn_test.process_utterance(
|
|
|
|
|
audio_file=audio_file, transcript=" ")
|
|
|
|
|
audio_len = audio.shape[0]
|
|
|
|
|
audio = paddle.to_tensor(audio, dtype='float32')
|
|
|
|
|
self.audio_len = paddle.to_tensor(audio_len)
|
|
|
|
|
self.audio = paddle.unsqueeze(audio, axis=0)
|
|
|
|
|
self.vocab_list = collate_fn_test.vocab_list
|
|
|
|
|
logger.info(f"audio feat shape: {self.audio.shape}")
|
|
|
|
|
|
|
|
|
|
elif parser_args.model == "conformer" or parser_args.model == "transformer" or parser_args.model == "wenetspeech":
|
|
|
|
|
logger.info("get the preprocess conf")
|
|
|
|
|
preprocess_conf = os.path.join(
|
|
|
|
|
os.path.dirname(os.path.abspath(self.cfg_path)),
|
|
|
|
|
"preprocess.yaml")
|
|
|
|
|
|
|
|
|
|
cmvn_path: data / mean_std.json
|
|
|
|
|
|
|
|
|
|
logger.info(preprocess_conf)
|
|
|
|
|
preprocess_args = {"train": False}
|
|
|
|
|
preprocessing = Transformation(preprocess_conf)
|
|
|
|
|
audio, sample_rate = soundfile.read(
|
|
|
|
|
audio_file, dtype="int16", always_2d=True)
|
|
|
|
|
if sample_rate != self.sr:
|
|
|
|
|
logger.error(
|
|
|
|
|
f"sample rate error: {sample_rate}, need {self.sr} ")
|
|
|
|
|
sys.exit(-1)
|
|
|
|
|
audio = audio[:, 0]
|
|
|
|
|
logger.info(f"audio shape: {audio.shape}")
|
|
|
|
|
# fbank
|
|
|
|
|
audio = preprocessing(audio, **preprocess_args)
|
|
|
|
|
|
|
|
|
|
self.audio_len = paddle.to_tensor(audio.shape[0])
|
|
|
|
|
self.audio = paddle.to_tensor(
|
|
|
|
|
audio, dtype='float32').unsqueeze(axis=0)
|
|
|
|
|
logger.info(f"audio feat shape: {self.audio.shape}")
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
raise Exception("wrong type")
|
|
|
|
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
|
|
def infer(self):
|
|
|
|
|
"""
|
|
|
|
|
Model inference and result stored in self.output.
|
|
|
|
|
"""
|
|
|
|
|
cfg = self.config.decoding
|
|
|
|
|
parser_args = self.parser_args
|
|
|
|
|
audio = self.audio
|
|
|
|
|
audio_len = self.audio_len
|
|
|
|
|
if parser_args.model == "ds2_online" or parser_args.model == "ds2_offline":
|
|
|
|
|
vocab_list = self.vocab_list
|
|
|
|
|
result_transcripts = self.model.decode(
|
|
|
|
|
audio,
|
|
|
|
|
audio_len,
|
|
|
|
|
vocab_list,
|
|
|
|
|
decoding_method=cfg.decoding_method,
|
|
|
|
|
lang_model_path=cfg.lang_model_path,
|
|
|
|
|
beam_alpha=cfg.alpha,
|
|
|
|
|
beam_beta=cfg.beta,
|
|
|
|
|
beam_size=cfg.beam_size,
|
|
|
|
|
cutoff_prob=cfg.cutoff_prob,
|
|
|
|
|
cutoff_top_n=cfg.cutoff_top_n,
|
|
|
|
|
num_processes=cfg.num_proc_bsearch)
|
|
|
|
|
self.result_transcripts = result_transcripts[0]
|
|
|
|
|
|
|
|
|
|
elif parser_args.model == "conformer" or parser_args.model == "transformer" or parser_args.model == "wenetspeech":
|
|
|
|
|
text_feature = self.text_feature
|
|
|
|
|
result_transcripts = self.model.decode(
|
|
|
|
|
audio,
|
|
|
|
|
audio_len,
|
|
|
|
|
text_feature=self.text_feature,
|
|
|
|
|
decoding_method=cfg.decoding_method,
|
|
|
|
|
lang_model_path=cfg.lang_model_path,
|
|
|
|
|
beam_alpha=cfg.alpha,
|
|
|
|
|
beam_beta=cfg.beta,
|
|
|
|
|
beam_size=cfg.beam_size,
|
|
|
|
|
cutoff_prob=cfg.cutoff_prob,
|
|
|
|
|
cutoff_top_n=cfg.cutoff_top_n,
|
|
|
|
|
num_processes=cfg.num_proc_bsearch,
|
|
|
|
|
ctc_weight=cfg.ctc_weight,
|
|
|
|
|
decoding_chunk_size=cfg.decoding_chunk_size,
|
|
|
|
|
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
|
|
|
|
|
simulate_streaming=cfg.simulate_streaming)
|
|
|
|
|
self.result_transcripts = result_transcripts[0][0]
|
|
|
|
|
else:
|
|
|
|
|
raise Exception("invalid model name")
|
|
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def postprocess(self) -> Union[str, os.PathLike]:
|
|
|
|
|
"""
|
|
|
|
|
Output postprocess and return human-readable results such as texts and audio files.
|
|
|
|
|
"""
|
|
|
|
|
pass
|
|
|
|
|
return self.result_transcripts
|
|
|
|
|
|
|
|
|
|
def execute(self, argv: List[str]) -> bool:
|
|
|
|
|
"""
|
|
|
|
|
Command line entry.
|
|
|
|
|
"""
|
|
|
|
|
parser_args = self.parser.parse_args(argv)
|
|
|
|
|
print(parser_args)
|
|
|
|
|
|
|
|
|
|
model = parser_args.model
|
|
|
|
|
lang = parser_args.lang
|
|
|
|
|
config = parser_args.config
|
|
|
|
|
ckpt_path = parser_args.ckpt_path
|
|
|
|
|
audio_file = parser_args.input
|
|
|
|
|
device = parser_args.device
|
|
|
|
|
self.parser_args = self.parser.parse_args(argv)
|
|
|
|
|
print(self.parser_args)
|
|
|
|
|
|
|
|
|
|
model = self.parser_args.model
|
|
|
|
|
lang = self.parser_args.lang
|
|
|
|
|
config = self.parser_args.config
|
|
|
|
|
ckpt_path = self.parser_args.ckpt_path
|
|
|
|
|
audio_file = os.path.abspath(self.parser_args.input)
|
|
|
|
|
device = self.parser_args.device
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
res = self(model, lang, config, ckpt_path, audio_file, device)
|
|
|
|
|