|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
|
|
"""Tacotron2 decoder related modules."""
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
import six
|
|
|
|
from paddle import nn
|
|
|
|
|
|
|
|
|
|
|
|
class Prenet(nn.Layer):
|
|
|
|
"""Prenet module for decoder of Spectrogram prediction network.
|
|
|
|
|
|
|
|
This is a module of Prenet in the decoder of Spectrogram prediction network,
|
|
|
|
which described in `Natural TTS
|
|
|
|
Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_.
|
|
|
|
The Prenet preforms nonlinear conversion
|
|
|
|
of inputs before input to auto-regressive lstm,
|
|
|
|
which helps to learn diagonal attentions.
|
|
|
|
|
|
|
|
Notes
|
|
|
|
----------
|
|
|
|
This module alway applies dropout even in evaluation.
|
|
|
|
See the detail in `Natural TTS Synthesis by
|
|
|
|
Conditioning WaveNet on Mel Spectrogram Predictions`_.
|
|
|
|
|
|
|
|
.. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`:
|
|
|
|
https://arxiv.org/abs/1712.05884
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, idim, n_layers=2, n_units=256, dropout_rate=0.5):
|
|
|
|
"""Initialize prenet module.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
idim : int
|
|
|
|
Dimension of the inputs.
|
|
|
|
odim : int
|
|
|
|
Dimension of the outputs.
|
|
|
|
n_layers : int, optional
|
|
|
|
The number of prenet layers.
|
|
|
|
n_units : int, optional
|
|
|
|
The number of prenet units.
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
self.dropout_rate = dropout_rate
|
|
|
|
self.prenet = nn.LayerList()
|
|
|
|
for layer in six.moves.range(n_layers):
|
|
|
|
n_inputs = idim if layer == 0 else n_units
|
|
|
|
self.prenet.append(
|
|
|
|
nn.Sequential(nn.Linear(n_inputs, n_units), nn.ReLU()))
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
"""Calculate forward propagation.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
x : Tensor
|
|
|
|
Batch of input tensors (B, ..., idim).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
----------
|
|
|
|
Tensor
|
|
|
|
Batch of output tensors (B, ..., odim).
|
|
|
|
|
|
|
|
"""
|
|
|
|
for i in six.moves.range(len(self.prenet)):
|
|
|
|
# F.dropout 引入了随机, tacotron2 的 dropout 是不能去掉的
|
|
|
|
x = F.dropout(self.prenet[i](x))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Postnet(nn.Layer):
|
|
|
|
"""Postnet module for Spectrogram prediction network.
|
|
|
|
|
|
|
|
This is a module of Postnet in Spectrogram prediction network,
|
|
|
|
which described in `Natural TTS Synthesis by
|
|
|
|
Conditioning WaveNet on Mel Spectrogram Predictions`_.
|
|
|
|
The Postnet predicts refines the predicted
|
|
|
|
Mel-filterbank of the decoder,
|
|
|
|
which helps to compensate the detail sturcture of spectrogram.
|
|
|
|
|
|
|
|
.. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`:
|
|
|
|
https://arxiv.org/abs/1712.05884
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
idim,
|
|
|
|
odim,
|
|
|
|
n_layers=5,
|
|
|
|
n_chans=512,
|
|
|
|
n_filts=5,
|
|
|
|
dropout_rate=0.5,
|
|
|
|
use_batch_norm=True, ):
|
|
|
|
"""Initialize postnet module.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
idim : int
|
|
|
|
Dimension of the inputs.
|
|
|
|
odim : int
|
|
|
|
Dimension of the outputs.
|
|
|
|
n_layers : int, optional
|
|
|
|
The number of layers.
|
|
|
|
n_filts : int, optional
|
|
|
|
The number of filter size.
|
|
|
|
n_units : int, optional
|
|
|
|
The number of filter channels.
|
|
|
|
use_batch_norm : bool, optional
|
|
|
|
Whether to use batch normalization..
|
|
|
|
dropout_rate : float, optional
|
|
|
|
Dropout rate..
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
self.postnet = nn.LayerList()
|
|
|
|
for layer in six.moves.range(n_layers - 1):
|
|
|
|
ichans = odim if layer == 0 else n_chans
|
|
|
|
ochans = odim if layer == n_layers - 1 else n_chans
|
|
|
|
if use_batch_norm:
|
|
|
|
self.postnet.append(
|
|
|
|
nn.Sequential(
|
|
|
|
nn.Conv1D(
|
|
|
|
ichans,
|
|
|
|
ochans,
|
|
|
|
n_filts,
|
|
|
|
stride=1,
|
|
|
|
padding=(n_filts - 1) // 2,
|
|
|
|
bias_attr=False, ),
|
|
|
|
nn.BatchNorm1D(ochans),
|
|
|
|
nn.Tanh(),
|
|
|
|
nn.Dropout(dropout_rate), ))
|
|
|
|
else:
|
|
|
|
self.postnet.append(
|
|
|
|
nn.Sequential(
|
|
|
|
nn.Conv1D(
|
|
|
|
ichans,
|
|
|
|
ochans,
|
|
|
|
n_filts,
|
|
|
|
stride=1,
|
|
|
|
padding=(n_filts - 1) // 2,
|
|
|
|
bias_attr=False, ),
|
|
|
|
nn.Tanh(),
|
|
|
|
nn.Dropout(dropout_rate), ))
|
|
|
|
ichans = n_chans if n_layers != 1 else odim
|
|
|
|
if use_batch_norm:
|
|
|
|
self.postnet.append(
|
|
|
|
nn.Sequential(
|
|
|
|
nn.Conv1D(
|
|
|
|
ichans,
|
|
|
|
odim,
|
|
|
|
n_filts,
|
|
|
|
stride=1,
|
|
|
|
padding=(n_filts - 1) // 2,
|
|
|
|
bias_attr=False, ),
|
|
|
|
nn.BatchNorm1D(odim),
|
|
|
|
nn.Dropout(dropout_rate), ))
|
|
|
|
else:
|
|
|
|
self.postnet.append(
|
|
|
|
nn.Sequential(
|
|
|
|
nn.Conv1D(
|
|
|
|
ichans,
|
|
|
|
odim,
|
|
|
|
n_filts,
|
|
|
|
stride=1,
|
|
|
|
padding=(n_filts - 1) // 2,
|
|
|
|
bias_attr=False, ),
|
|
|
|
nn.Dropout(dropout_rate), ))
|
|
|
|
|
|
|
|
def forward(self, xs):
|
|
|
|
"""Calculate forward propagation.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
xs : Tensor
|
|
|
|
Batch of the sequences of padded input tensors (B, idim, Tmax).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
----------
|
|
|
|
Tensor
|
|
|
|
Batch of padded output tensor. (B, odim, Tmax).
|
|
|
|
|
|
|
|
"""
|
|
|
|
for i in six.moves.range(len(self.postnet)):
|
|
|
|
xs = self.postnet[i](xs)
|
|
|
|
return xs
|