|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
|
|
"""Lightweight Convolution Module."""
|
|
|
|
import numpy
|
|
|
|
import paddle
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle import nn
|
|
|
|
|
|
|
|
from paddlespeech.t2s.modules.activation import get_activation
|
|
|
|
from paddlespeech.t2s.modules.masked_fill import masked_fill
|
|
|
|
|
|
|
|
MIN_VALUE = float(numpy.finfo(numpy.float32).min)
|
|
|
|
|
|
|
|
|
|
|
|
class LightweightConvolution(nn.Layer):
|
|
|
|
"""Lightweight Convolution layer.
|
|
|
|
|
|
|
|
This implementation is based on
|
|
|
|
https://github.com/pytorch/fairseq/tree/master/fairseq
|
|
|
|
|
|
|
|
Args:
|
|
|
|
wshare (int):
|
|
|
|
the number of kernel of convolution
|
|
|
|
n_feat (int):
|
|
|
|
the number of features
|
|
|
|
dropout_rate (float):
|
|
|
|
dropout_rate
|
|
|
|
kernel_size (int):
|
|
|
|
kernel size (length)
|
|
|
|
use_kernel_mask (bool):
|
|
|
|
Use causal mask or not for convolution kernel
|
|
|
|
use_bias (bool):
|
|
|
|
Use bias term or not.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
wshare,
|
|
|
|
n_feat,
|
|
|
|
dropout_rate,
|
|
|
|
kernel_size,
|
|
|
|
use_kernel_mask=False,
|
|
|
|
use_bias=False, ):
|
|
|
|
"""Construct Lightweight Convolution layer."""
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
assert n_feat % wshare == 0
|
|
|
|
self.wshare = wshare
|
|
|
|
self.use_kernel_mask = use_kernel_mask
|
|
|
|
self.dropout_rate = dropout_rate
|
|
|
|
self.kernel_size = kernel_size
|
|
|
|
self.padding_size = int(kernel_size / 2)
|
|
|
|
|
|
|
|
# linear -> GLU -> lightconv -> linear
|
|
|
|
self.linear1 = nn.Linear(n_feat, n_feat * 2)
|
|
|
|
self.linear2 = nn.Linear(n_feat, n_feat)
|
|
|
|
self.act = get_activation("glu")
|
|
|
|
|
|
|
|
# lightconv related
|
|
|
|
self.uniform_ = nn.initializer.Uniform()
|
|
|
|
self.weight = paddle.to_tensor(
|
|
|
|
numpy.random.uniform(0, 1, size=[self.wshare, 1, kernel_size]),
|
|
|
|
dtype="float32")
|
|
|
|
self.uniform_(self.weight)
|
|
|
|
self.weight = paddle.create_parameter(
|
|
|
|
shape=self.weight.shape,
|
|
|
|
dtype=str(self.weight.numpy().dtype),
|
|
|
|
default_initializer=paddle.nn.initializer.Assign(self.weight))
|
|
|
|
self.use_bias = use_bias
|
|
|
|
if self.use_bias:
|
|
|
|
self.bias = paddle.Tensor(n_feat)
|
|
|
|
self.bias = paddle.create_parameter(
|
|
|
|
shape=self.bias.shape,
|
|
|
|
dtype=str(self.bias.numpy().dtype),
|
|
|
|
default_initializer=paddle.nn.initializer.Assign(self.bias))
|
|
|
|
|
|
|
|
# mask of kernel
|
|
|
|
kernel_mask0 = paddle.zeros([self.wshare, int(kernel_size / 2)])
|
|
|
|
kernel_mask1 = paddle.ones([self.wshare, int(kernel_size / 2 + 1)])
|
|
|
|
self.kernel_mask = paddle.concat(
|
|
|
|
(kernel_mask1, kernel_mask0), axis=-1).unsqueeze(1)
|
|
|
|
|
|
|
|
def forward(self, query, key, value, mask):
|
|
|
|
"""Forward of 'Lightweight Convolution'.
|
|
|
|
|
|
|
|
This function takes query, key and value but uses only query.
|
|
|
|
This is just for compatibility with self-attention layer (attention.py)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query (Tensor):
|
|
|
|
input tensor. (batch, time1, d_model)
|
|
|
|
key (Tensor):
|
|
|
|
NOT USED. (batch, time2, d_model)
|
|
|
|
value (Tensor):
|
|
|
|
NOT USED. (batch, time2, d_model)
|
|
|
|
mask : (Tensor):
|
|
|
|
(batch, time1, time2) mask
|
|
|
|
|
|
|
|
Return:
|
|
|
|
Tensor: ouput. (batch, time1, d_model)
|
|
|
|
|
|
|
|
"""
|
|
|
|
# linear -> GLU -> lightconv -> linear
|
|
|
|
x = query
|
|
|
|
B, T, C = x.shape
|
|
|
|
H = self.wshare
|
|
|
|
|
|
|
|
# first liner layer
|
|
|
|
x = self.linear1(x)
|
|
|
|
|
|
|
|
# GLU activation
|
|
|
|
x = self.act(x)
|
|
|
|
|
|
|
|
# lightconv
|
|
|
|
# B x C x T
|
|
|
|
x = x.transpose([0, 2, 1]).reshape([-1, H, T])
|
|
|
|
weight = F.dropout(
|
|
|
|
self.weight, self.dropout_rate, training=self.training)
|
|
|
|
if self.use_kernel_mask:
|
|
|
|
weight = masked_fill(weight, self.kernel_mask == 0.0, float("-inf"))
|
|
|
|
# weight = weight.masked_fill(self.kernel_mask == 0.0, float("-inf"))
|
|
|
|
weight = F.softmax(weight, axis=-1)
|
|
|
|
x = F.conv1d(
|
|
|
|
x, weight, padding=self.padding_size,
|
|
|
|
groups=self.wshare).reshape([B, C, T])
|
|
|
|
if self.use_bias:
|
|
|
|
x = x + self.bias.reshape([1, -1, 1])
|
|
|
|
# B x T x C
|
|
|
|
x = x.transpose([0, 2, 1])
|
|
|
|
|
|
|
|
if mask is not None and not self.use_kernel_mask:
|
|
|
|
mask = mask.transpose([0, 2, 1])
|
|
|
|
# x = x.masked_fill(mask == 0, 0.0)
|
|
|
|
x = masked_fill(x, mask == 0, 0.0)
|
|
|
|
|
|
|
|
# second linear layer
|
|
|
|
x = self.linear2(x)
|
|
|
|
return x
|