You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
167 lines
5.5 KiB
167 lines
5.5 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# generate mels using durations.txt
|
||
|
# for mb melgan finetune
|
||
|
# 长度和原本的 mel 不一致怎么办?
|
||
|
import argparse
|
||
|
from pathlib import Path
|
||
|
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
import yaml
|
||
|
from yacs.config import CfgNode
|
||
|
|
||
|
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
|
||
|
from paddlespeech.t2s.datasets.preprocess_utils import merge_silence
|
||
|
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2
|
||
|
from paddlespeech.t2s.models.fastspeech2 import StyleFastSpeech2Inference
|
||
|
from paddlespeech.t2s.modules.normalizer import ZScore
|
||
|
|
||
|
|
||
|
def evaluate(args, fastspeech2_config):
|
||
|
|
||
|
# construct dataset for evaluation
|
||
|
with open(args.phones_dict, "r") as f:
|
||
|
phn_id = [line.strip().split() for line in f.readlines()]
|
||
|
vocab_size = len(phn_id)
|
||
|
print("vocab_size:", vocab_size)
|
||
|
|
||
|
phone_dict = {}
|
||
|
for phn, id in phn_id:
|
||
|
phone_dict[phn] = int(id)
|
||
|
|
||
|
odim = fastspeech2_config.n_mels
|
||
|
model = FastSpeech2(
|
||
|
idim=vocab_size, odim=odim, **fastspeech2_config["model"])
|
||
|
|
||
|
model.set_state_dict(
|
||
|
paddle.load(args.fastspeech2_checkpoint)["main_params"])
|
||
|
model.eval()
|
||
|
|
||
|
stat = np.load(args.fastspeech2_stat)
|
||
|
mu, std = stat
|
||
|
mu = paddle.to_tensor(mu)
|
||
|
std = paddle.to_tensor(std)
|
||
|
fastspeech2_normalizer = ZScore(mu, std)
|
||
|
|
||
|
fastspeech2_inference = StyleFastSpeech2Inference(fastspeech2_normalizer,
|
||
|
model)
|
||
|
fastspeech2_inference.eval()
|
||
|
|
||
|
output_dir = Path(args.output_dir)
|
||
|
output_dir.mkdir(parents=True, exist_ok=True)
|
||
|
|
||
|
sentences, speaker_set = get_phn_dur(args.dur_file)
|
||
|
merge_silence(sentences)
|
||
|
|
||
|
for i, utt_id in enumerate(sentences):
|
||
|
phones = sentences[utt_id][0]
|
||
|
durations = sentences[utt_id][1]
|
||
|
speaker = sentences[utt_id][2]
|
||
|
# 裁剪掉开头和结尾的 sil
|
||
|
if args.cut_sil:
|
||
|
if phones[0] == "sil" and len(durations) > 1:
|
||
|
durations = durations[1:]
|
||
|
phones = phones[1:]
|
||
|
if phones[-1] == 'sil' and len(durations) > 1:
|
||
|
durations = durations[:-1]
|
||
|
phones = phones[:-1]
|
||
|
# sentences[utt_id][0] = phones
|
||
|
# sentences[utt_id][1] = durations
|
||
|
|
||
|
phone_ids = [phone_dict[phn] for phn in phones]
|
||
|
phone_ids = paddle.to_tensor(np.array(phone_ids))
|
||
|
durations = paddle.to_tensor(np.array(durations))
|
||
|
# 生成的和真实的可能有 1, 2 帧的差距,但是 batch_fn 会修复
|
||
|
# split data into 3 sections
|
||
|
if args.dataset == "baker":
|
||
|
num_train = 9800
|
||
|
num_dev = 100
|
||
|
if i in range(0, num_train):
|
||
|
sub_output_dir = output_dir / ("train/raw")
|
||
|
elif i in range(num_train, num_train + num_dev):
|
||
|
sub_output_dir = output_dir / ("dev/raw")
|
||
|
else:
|
||
|
sub_output_dir = output_dir / ("test/raw")
|
||
|
sub_output_dir.mkdir(parents=True, exist_ok=True)
|
||
|
with paddle.no_grad():
|
||
|
mel = fastspeech2_inference(phone_ids, durations=durations)
|
||
|
np.save(sub_output_dir / (utt_id + "_feats.npy"), mel)
|
||
|
|
||
|
|
||
|
def main():
|
||
|
# parse args and config and redirect to train_sp
|
||
|
parser = argparse.ArgumentParser(
|
||
|
description="Synthesize with fastspeech2 & parallel wavegan.")
|
||
|
parser.add_argument(
|
||
|
"--dataset",
|
||
|
default="baker",
|
||
|
type=str,
|
||
|
help="name of dataset, should in {baker, ljspeech, vctk} now")
|
||
|
parser.add_argument(
|
||
|
"--fastspeech2-config", type=str, help="fastspeech2 config file.")
|
||
|
parser.add_argument(
|
||
|
"--fastspeech2-checkpoint",
|
||
|
type=str,
|
||
|
help="fastspeech2 checkpoint to load.")
|
||
|
parser.add_argument(
|
||
|
"--fastspeech2-stat",
|
||
|
type=str,
|
||
|
help="mean and standard deviation used to normalize spectrogram when training fastspeech2."
|
||
|
)
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--phones-dict",
|
||
|
type=str,
|
||
|
default="phone_id_map.txt",
|
||
|
help="phone vocabulary file.")
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--dur-file", default=None, type=str, help="path to durations.txt.")
|
||
|
parser.add_argument("--output-dir", type=str, help="output dir.")
|
||
|
parser.add_argument(
|
||
|
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
||
|
|
||
|
def str2bool(str):
|
||
|
return True if str.lower() == 'true' else False
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--cut-sil",
|
||
|
type=str2bool,
|
||
|
default=True,
|
||
|
help="whether cut sil in the edge of audio")
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
if args.ngpu == 0:
|
||
|
paddle.set_device("cpu")
|
||
|
elif args.ngpu > 0:
|
||
|
paddle.set_device("gpu")
|
||
|
else:
|
||
|
print("ngpu should >= 0 !")
|
||
|
|
||
|
with open(args.fastspeech2_config) as f:
|
||
|
fastspeech2_config = CfgNode(yaml.safe_load(f))
|
||
|
|
||
|
print("========Args========")
|
||
|
print(yaml.safe_dump(vars(args)))
|
||
|
print("========Config========")
|
||
|
print(fastspeech2_config)
|
||
|
|
||
|
evaluate(args, fastspeech2_config)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|