You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/models/speedyspeech/speedyspeech_updater.py

159 lines
5.7 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import paddle
from paddle import distributed as dist
from paddle.fluid.layers import huber_loss
from paddle.nn import functional as F
from paddlespeech.t2s.modules.losses import masked_l1_loss
from paddlespeech.t2s.modules.losses import ssim
from paddlespeech.t2s.modules.losses import weighted_mean
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
from paddlespeech.t2s.training.reporter import report
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
logging.basicConfig(
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='[%Y-%m-%d %H:%M:%S]')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class SpeedySpeechUpdater(StandardUpdater):
def __init__(self,
model,
optimizer,
dataloader,
init_state=None,
output_dir=None):
super().__init__(model, optimizer, dataloader, init_state=None)
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
def update_core(self, batch):
self.msg = "Rank: {}, ".format(dist.get_rank())
losses_dict = {}
decoded, predicted_durations = self.model(
text=batch["phones"],
tones=batch["tones"],
durations=batch["durations"])
target_mel = batch["feats"]
spec_mask = F.sequence_mask(
batch["num_frames"], dtype=target_mel.dtype).unsqueeze(-1)
text_mask = F.sequence_mask(
batch["num_phones"], dtype=predicted_durations.dtype)
# spec loss
l1_loss = masked_l1_loss(decoded, target_mel, spec_mask)
# duration loss
target_durations = batch["durations"]
target_durations = paddle.maximum(
target_durations.astype(predicted_durations.dtype),
paddle.to_tensor([1.0]))
duration_loss = weighted_mean(
huber_loss(
predicted_durations, paddle.log(target_durations), delta=1.0),
text_mask, )
# ssim loss
ssim_loss = 1.0 - ssim((decoded * spec_mask).unsqueeze(1),
(target_mel * spec_mask).unsqueeze(1))
loss = l1_loss + ssim_loss + duration_loss
optimizer = self.optimizer
optimizer.clear_grad()
loss.backward()
optimizer.step()
report("train/loss", float(loss))
report("train/l1_loss", float(l1_loss))
report("train/duration_loss", float(duration_loss))
report("train/ssim_loss", float(ssim_loss))
losses_dict["l1_loss"] = float(l1_loss)
losses_dict["duration_loss"] = float(duration_loss)
losses_dict["ssim_loss"] = float(ssim_loss)
losses_dict["loss"] = float(loss)
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
class SpeedySpeechEvaluator(StandardEvaluator):
def __init__(self, model, dataloader, output_dir=None):
super().__init__(model, dataloader)
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
def evaluate_core(self, batch):
self.msg = "Evaluate: "
losses_dict = {}
decoded, predicted_durations = self.model(
text=batch["phones"],
tones=batch["tones"],
durations=batch["durations"])
target_mel = batch["feats"]
spec_mask = F.sequence_mask(
batch["num_frames"], dtype=target_mel.dtype).unsqueeze(-1)
text_mask = F.sequence_mask(
batch["num_phones"], dtype=predicted_durations.dtype)
# spec loss
l1_loss = masked_l1_loss(decoded, target_mel, spec_mask)
# duration loss
target_durations = batch["durations"]
target_durations = paddle.maximum(
target_durations.astype(predicted_durations.dtype),
paddle.to_tensor([1.0]))
duration_loss = weighted_mean(
huber_loss(
predicted_durations, paddle.log(target_durations), delta=1.0),
text_mask, )
# ssim loss
ssim_loss = 1.0 - ssim((decoded * spec_mask).unsqueeze(1),
(target_mel * spec_mask).unsqueeze(1))
loss = l1_loss + ssim_loss + duration_loss
# import pdb; pdb.set_trace()
report("eval/loss", float(loss))
report("eval/l1_loss", float(l1_loss))
report("eval/duration_loss", float(duration_loss))
report("eval/ssim_loss", float(ssim_loss))
losses_dict["l1_loss"] = float(l1_loss)
losses_dict["duration_loss"] = float(duration_loss)
losses_dict["ssim_loss"] = float(ssim_loss)
losses_dict["loss"] = float(loss)
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
self.logger.info(self.msg)