You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
230 lines
7.3 KiB
230 lines
7.3 KiB
3 years ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import librosa
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
from librosa.util import pad_center
|
||
|
from paddle import nn
|
||
|
from paddle.nn import functional as F
|
||
|
from scipy import signal
|
||
|
|
||
|
__all__ = ["quantize", "dequantize", "STFT", "MelScale"]
|
||
|
|
||
|
|
||
|
def quantize(values, n_bands):
|
||
|
"""Linearlly quantize a float Tensor in [-1, 1) to an interger Tensor in
|
||
|
[0, n_bands).
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
values : Tensor [dtype: flaot32 or float64]
|
||
|
The floating point value.
|
||
|
|
||
|
n_bands : int
|
||
|
The number of bands. The output integer Tensor's value is in the range
|
||
|
[0, n_bans).
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
Tensor [dtype: int 64]
|
||
|
The quantized tensor.
|
||
|
"""
|
||
|
quantized = paddle.cast((values + 1.0) / 2.0 * n_bands, "int64")
|
||
|
return quantized
|
||
|
|
||
|
|
||
|
def dequantize(quantized, n_bands, dtype=None):
|
||
|
"""Linearlly dequantize an integer Tensor into a float Tensor in the range
|
||
|
[-1, 1).
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
quantized : Tensor [dtype: int]
|
||
|
The quantized value in the range [0, n_bands).
|
||
|
|
||
|
n_bands : int
|
||
|
Number of bands. The input integer Tensor's value is in the range
|
||
|
[0, n_bans).
|
||
|
|
||
|
dtype : str, optional
|
||
|
Data type of the output.
|
||
|
|
||
|
Returns
|
||
|
-----------
|
||
|
Tensor
|
||
|
The dequantized tensor, dtype is specified by `dtype`. If `dtype` is
|
||
|
not specified, the default float data type is used.
|
||
|
"""
|
||
|
dtype = dtype or paddle.get_default_dtype()
|
||
|
value = (paddle.cast(quantized, dtype) + 0.5) * (2.0 / n_bands) - 1.0
|
||
|
return value
|
||
|
|
||
|
|
||
|
class STFT(nn.Layer):
|
||
|
"""A module for computing stft transformation in a differentiable way.
|
||
|
|
||
|
Parameters
|
||
|
------------
|
||
|
n_fft : int
|
||
|
Number of samples in a frame.
|
||
|
hop_length : int
|
||
|
Number of samples shifted between adjacent frames.
|
||
|
win_length : int
|
||
|
Length of the window.
|
||
|
window : str, optional
|
||
|
Name of window function, see `scipy.signal.get_window` for more
|
||
|
details. Defaults to "hanning".
|
||
|
center : bool
|
||
|
If True, the signal y is padded so that frame D[:, t] is centered
|
||
|
at y[t * hop_length]. If False, then D[:, t] begins at y[t * hop_length].
|
||
|
Defaults to True.
|
||
|
pad_mode : string or function
|
||
|
If center=True, this argument is passed to np.pad for padding the edges
|
||
|
of the signal y. By default (pad_mode="reflect"), y is padded on both
|
||
|
sides with its own reflection, mirrored around its first and last
|
||
|
sample respectively. If center=False, this argument is ignored.
|
||
|
|
||
|
Notes
|
||
|
-----------
|
||
|
It behaves like ``librosa.core.stft``. See ``librosa.core.stft`` for more
|
||
|
details.
|
||
|
|
||
|
Given a audio which ``T`` samples, it the STFT transformation outputs a
|
||
|
spectrum with (C, frames) and complex dtype, where ``C = 1 + n_fft / 2``
|
||
|
and ``frames = 1 + T // hop_lenghth``.
|
||
|
|
||
|
Ony ``center`` and ``reflect`` padding is supported now.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
n_fft,
|
||
|
hop_length=None,
|
||
|
win_length=None,
|
||
|
window="hanning",
|
||
|
center=True,
|
||
|
pad_mode="reflect"):
|
||
|
super().__init__()
|
||
|
# By default, use the entire frame
|
||
|
if win_length is None:
|
||
|
win_length = n_fft
|
||
|
|
||
|
# Set the default hop, if it's not already specified
|
||
|
if hop_length is None:
|
||
|
hop_length = int(win_length // 4)
|
||
|
|
||
|
self.hop_length = hop_length
|
||
|
self.n_bin = 1 + n_fft // 2
|
||
|
self.n_fft = n_fft
|
||
|
self.center = center
|
||
|
self.pad_mode = pad_mode
|
||
|
|
||
|
# calculate window
|
||
|
window = signal.get_window(window, win_length, fftbins=True)
|
||
|
|
||
|
# pad window to n_fft size
|
||
|
if n_fft != win_length:
|
||
|
window = pad_center(window, n_fft, mode="constant")
|
||
|
# lpad = (n_fft - win_length) // 2
|
||
|
# rpad = n_fft - win_length - lpad
|
||
|
# window = np.pad(window, ((lpad, pad), ), 'constant')
|
||
|
|
||
|
# calculate weights
|
||
|
# r = np.arange(0, n_fft)
|
||
|
# M = np.expand_dims(r, -1) * np.expand_dims(r, 0)
|
||
|
# w_real = np.reshape(window *
|
||
|
# np.cos(2 * np.pi * M / n_fft)[:self.n_bin],
|
||
|
# (self.n_bin, 1, self.n_fft))
|
||
|
# w_imag = np.reshape(window *
|
||
|
# np.sin(-2 * np.pi * M / n_fft)[:self.n_bin],
|
||
|
# (self.n_bin, 1, self.n_fft))
|
||
|
weight = np.fft.fft(np.eye(n_fft))[:self.n_bin]
|
||
|
w_real = weight.real
|
||
|
w_imag = weight.imag
|
||
|
w = np.concatenate([w_real, w_imag], axis=0)
|
||
|
w = w * window
|
||
|
w = np.expand_dims(w, 1)
|
||
|
weight = paddle.cast(paddle.to_tensor(w), paddle.get_default_dtype())
|
||
|
self.register_buffer("weight", weight)
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""Compute the stft transform.
|
||
|
Parameters
|
||
|
------------
|
||
|
x : Tensor [shape=(B, T)]
|
||
|
The input waveform.
|
||
|
Returns
|
||
|
------------
|
||
|
real : Tensor [shape=(B, C, frames)]
|
||
|
The real part of the spectrogram.
|
||
|
|
||
|
imag : Tensor [shape=(B, C, frames)]
|
||
|
The image part of the spectrogram.
|
||
|
"""
|
||
|
x = paddle.unsqueeze(x, axis=1)
|
||
|
if self.center:
|
||
|
x = F.pad(
|
||
|
x, [self.n_fft // 2, self.n_fft // 2],
|
||
|
data_format='NCL',
|
||
|
mode=self.pad_mode)
|
||
|
|
||
|
# to BCT, C=1
|
||
|
out = F.conv1d(x, self.weight, stride=self.hop_length)
|
||
|
real, imag = paddle.chunk(out, 2, axis=1) # BCT
|
||
|
return real, imag
|
||
|
|
||
|
def power(self, x):
|
||
|
"""Compute the power spectrum.
|
||
|
Parameters
|
||
|
------------
|
||
|
x : Tensor [shape=(B, T)]
|
||
|
The input waveform.
|
||
|
Returns
|
||
|
------------
|
||
|
Tensor [shape=(B, C, T)]
|
||
|
The power spectrum.
|
||
|
"""
|
||
|
real, imag = self.forward(x)
|
||
|
power = real**2 + imag**2
|
||
|
return power
|
||
|
|
||
|
def magnitude(self, x):
|
||
|
"""Compute the magnitude of the spectrum.
|
||
|
Parameters
|
||
|
------------
|
||
|
x : Tensor [shape=(B, T)]
|
||
|
The input waveform.
|
||
|
Returns
|
||
|
------------
|
||
|
Tensor [shape=(B, C, T)]
|
||
|
The magnitude of the spectrum.
|
||
|
"""
|
||
|
power = self.power(x)
|
||
|
magnitude = paddle.sqrt(power) # TODO(chenfeiyu): maybe clipping
|
||
|
return magnitude
|
||
|
|
||
|
|
||
|
class MelScale(nn.Layer):
|
||
|
def __init__(self, sr, n_fft, n_mels, fmin, fmax):
|
||
|
super().__init__()
|
||
|
mel_basis = librosa.filters.mel(sr, n_fft, n_mels, fmin, fmax)
|
||
|
# self.weight = paddle.to_tensor(mel_basis)
|
||
|
weight = paddle.to_tensor(mel_basis, dtype=paddle.get_default_dtype())
|
||
|
self.register_buffer("weight", weight)
|
||
|
|
||
|
def forward(self, spec):
|
||
|
# (n_mels, n_freq) * (batch_size, n_freq, n_frames)
|
||
|
mel = paddle.matmul(self.weight, spec)
|
||
|
return mel
|