E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""Multi-Head Attention layer definition."""
|
|
|
|
import math
|
|
|
|
from typing import Optional
|
|
|
|
from typing import Tuple
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
from paddle import nn
|
|
|
|
from paddle.nn import initializer as I
|
|
|
|
|
|
|
|
from deepspeech.utils.log import Log
|
|
|
|
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
|
|
__all__ = ["MultiHeadedAttention", "RelPositionMultiHeadedAttention"]
|
|
|
|
|
|
|
|
# Relative Positional Encodings
|
|
|
|
# https://www.jianshu.com/p/c0608efcc26f
|
|
|
|
# https://zhuanlan.zhihu.com/p/344604604
|
|
|
|
|
|
|
|
|
|
|
|
class MultiHeadedAttention(nn.Layer):
|
|
|
|
"""Multi-Head Attention layer."""
|
|
|
|
|
|
|
|
def __init__(self, n_head: int, n_feat: int, dropout_rate: float):
|
|
|
|
"""Construct an MultiHeadedAttention object.
|
|
|
|
Args:
|
|
|
|
n_head (int): The number of heads.
|
|
|
|
n_feat (int): The number of features.
|
|
|
|
dropout_rate (float): Dropout rate.
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
assert n_feat % n_head == 0
|
|
|
|
# We assume d_v always equals d_k
|
|
|
|
self.d_k = n_feat // n_head
|
|
|
|
self.h = n_head
|
|
|
|
self.linear_q = nn.Linear(n_feat, n_feat)
|
|
|
|
self.linear_k = nn.Linear(n_feat, n_feat)
|
|
|
|
self.linear_v = nn.Linear(n_feat, n_feat)
|
|
|
|
self.linear_out = nn.Linear(n_feat, n_feat)
|
|
|
|
self.dropout = nn.Dropout(p=dropout_rate)
|
|
|
|
|
|
|
|
def forward_qkv(self,
|
|
|
|
query: paddle.Tensor,
|
|
|
|
key: paddle.Tensor,
|
|
|
|
value: paddle.Tensor
|
|
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
|
|
|
"""Transform query, key and value.
|
|
|
|
Args:
|
|
|
|
query (paddle.Tensor): Query tensor (#batch, time1, size).
|
|
|
|
key (paddle.Tensor): Key tensor (#batch, time2, size).
|
|
|
|
value (paddle.Tensor): Value tensor (#batch, time2, size).
|
|
|
|
Returns:
|
|
|
|
paddle.Tensor: Transformed query tensor, size
|
|
|
|
(#batch, n_head, time1, d_k).
|
|
|
|
paddle.Tensor: Transformed key tensor, size
|
|
|
|
(#batch, n_head, time2, d_k).
|
|
|
|
paddle.Tensor: Transformed value tensor, size
|
|
|
|
(#batch, n_head, time2, d_k).
|
|
|
|
"""
|
|
|
|
n_batch = query.shape[0]
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
|
|
|
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
|
|
|
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
|
|
|
q = q.transpose([0, 2, 1, 3]) # (batch, head, time1, d_k)
|
|
|
|
k = k.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k)
|
|
|
|
v = v.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k)
|
|
|
|
|
|
|
|
return q, k, v
|
|
|
|
|
|
|
|
def forward_attention(self,
|
|
|
|
value: paddle.Tensor,
|
|
|
|
scores: paddle.Tensor,
|
|
|
|
mask: Optional[paddle.Tensor]) -> paddle.Tensor:
|
|
|
|
"""Compute attention context vector.
|
|
|
|
Args:
|
|
|
|
value (paddle.Tensor): Transformed value, size
|
|
|
|
(#batch, n_head, time2, d_k).
|
|
|
|
scores (paddle.Tensor): Attention score, size
|
|
|
|
(#batch, n_head, time1, time2).
|
|
|
|
mask (paddle.Tensor): Mask, size (#batch, 1, time2) or
|
|
|
|
(#batch, time1, time2).
|
|
|
|
Returns:
|
|
|
|
paddle.Tensor: Transformed value weighted
|
|
|
|
by the attention score, (#batch, time1, d_model).
|
|
|
|
"""
|
|
|
|
n_batch = value.shape[0]
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
if mask is not None:
|
|
|
|
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
|
|
|
scores = scores.masked_fill(mask, -float('inf'))
|
|
|
|
attn = paddle.softmax(
|
|
|
|
scores, axis=-1).masked_fill(mask,
|
|
|
|
0.0) # (batch, head, time1, time2)
|
|
|
|
else:
|
|
|
|
attn = paddle.softmax(
|
|
|
|
scores, axis=-1) # (batch, head, time1, time2)
|
|
|
|
|
|
|
|
p_attn = self.dropout(attn)
|
|
|
|
x = paddle.matmul(p_attn, value) # (batch, head, time1, d_k)
|
|
|
|
x = x.transpose([0, 2, 1, 3]).view(n_batch, -1, self.h *
|
|
|
|
self.d_k) # (batch, time1, d_model)
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
|
|
|
|
return self.linear_out(x) # (batch, time1, d_model)
|
|
|
|
|
|
|
|
def forward(self,
|
|
|
|
query: paddle.Tensor,
|
|
|
|
key: paddle.Tensor,
|
|
|
|
value: paddle.Tensor,
|
|
|
|
mask: Optional[paddle.Tensor]) -> paddle.Tensor:
|
|
|
|
"""Compute scaled dot product attention.
|
|
|
|
Args:
|
|
|
|
query (torch.Tensor): Query tensor (#batch, time1, size).
|
|
|
|
key (torch.Tensor): Key tensor (#batch, time2, size).
|
|
|
|
value (torch.Tensor): Value tensor (#batch, time2, size).
|
|
|
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
|
|
|
(#batch, time1, time2).
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: Output tensor (#batch, time1, d_model).
|
|
|
|
"""
|
|
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
|
|
scores = paddle.matmul(q,
|
|
|
|
k.transpose([0, 1, 3, 2])) / math.sqrt(self.d_k)
|
|
|
|
return self.forward_attention(v, scores, mask)
|
|
|
|
|
|
|
|
|
|
|
|
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
|
|
|
"""Multi-Head Attention layer with relative position encoding."""
|
|
|
|
|
|
|
|
def __init__(self, n_head, n_feat, dropout_rate):
|
|
|
|
"""Construct an RelPositionMultiHeadedAttention object.
|
|
|
|
Paper: https://arxiv.org/abs/1901.02860
|
|
|
|
Args:
|
|
|
|
n_head (int): The number of heads.
|
|
|
|
n_feat (int): The number of features.
|
|
|
|
dropout_rate (float): Dropout rate.
|
|
|
|
"""
|
|
|
|
super().__init__(n_head, n_feat, dropout_rate)
|
|
|
|
# linear transformation for positional encoding
|
|
|
|
self.linear_pos = nn.Linear(n_feat, n_feat, bias_attr=False)
|
|
|
|
# these two learnable bias are used in matrix c and matrix d
|
|
|
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
|
|
|
#self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
|
|
|
#self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
|
|
|
#torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
|
|
|
#torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
|
|
|
pos_bias_u = self.create_parameter(
|
|
|
|
[self.h, self.d_k], default_initializer=I.XavierUniform())
|
|
|
|
self.add_parameter('pos_bias_u', pos_bias_u)
|
|
|
|
pos_bias_v = self.create_parameter(
|
|
|
|
(self.h, self.d_k), default_initializer=I.XavierUniform())
|
|
|
|
self.add_parameter('pos_bias_v', pos_bias_v)
|
|
|
|
|
|
|
|
def rel_shift(self, x, zero_triu: bool=False):
|
|
|
|
"""Compute relative positinal encoding.
|
|
|
|
Args:
|
|
|
|
x (paddle.Tensor): Input tensor (batch, head, time1, time1).
|
|
|
|
zero_triu (bool): If true, return the lower triangular part of
|
|
|
|
the matrix.
|
|
|
|
Returns:
|
|
|
|
paddle.Tensor: Output tensor. (batch, head, time1, time1)
|
|
|
|
"""
|
|
|
|
zero_pad = paddle.zeros(
|
|
|
|
(x.shape[0], x.shape[1], x.shape[2], 1), dtype=x.dtype)
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
x_padded = paddle.cat([zero_pad, x], dim=-1)
|
|
|
|
|
|
|
|
x_padded = x_padded.view(x.shape[0], x.shape[1], x.shape[3] + 1,
|
|
|
|
x.shape[2])
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
x = x_padded[:, :, 1:].view_as(x) # [B, H, T1, T1]
|
|
|
|
|
|
|
|
if zero_triu:
|
|
|
|
ones = paddle.ones((x.shape[2], x.shape[3]))
|
|
|
|
x = x * paddle.tril(ones, x.shape[3] - x.shape[2])[None, None, :, :]
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self,
|
|
|
|
query: paddle.Tensor,
|
|
|
|
key: paddle.Tensor,
|
|
|
|
value: paddle.Tensor,
|
|
|
|
pos_emb: paddle.Tensor,
|
|
|
|
mask: Optional[paddle.Tensor]):
|
|
|
|
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
|
|
|
Args:
|
|
|
|
query (paddle.Tensor): Query tensor (#batch, time1, size).
|
|
|
|
key (paddle.Tensor): Key tensor (#batch, time2, size).
|
|
|
|
value (paddle.Tensor): Value tensor (#batch, time2, size).
|
|
|
|
pos_emb (paddle.Tensor): Positional embedding tensor
|
|
|
|
(#batch, time1, size).
|
|
|
|
mask (paddle.Tensor): Mask tensor (#batch, 1, time2) or
|
|
|
|
(#batch, time1, time2).
|
|
|
|
Returns:
|
|
|
|
paddle.Tensor: Output tensor (#batch, time1, d_model).
|
|
|
|
"""
|
|
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
|
|
q = q.transpose([0, 2, 1, 3]) # (batch, time1, head, d_k)
|
|
|
|
|
|
|
|
n_batch_pos = pos_emb.shape[0]
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
|
|
|
p = p.transpose([0, 2, 1, 3]) # (batch, head, time1, d_k)
|
|
|
|
|
|
|
|
# (batch, head, time1, d_k)
|
|
|
|
q_with_bias_u = (q + self.pos_bias_u).transpose([0, 2, 1, 3])
|
|
|
|
# (batch, head, time1, d_k)
|
|
|
|
q_with_bias_v = (q + self.pos_bias_v).transpose([0, 2, 1, 3])
|
|
|
|
|
|
|
|
# compute attention score
|
|
|
|
# first compute matrix a and matrix c
|
|
|
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
|
|
|
# (batch, head, time1, time2)
|
|
|
|
matrix_ac = paddle.matmul(q_with_bias_u, k.transpose([0, 1, 3, 2]))
|
|
|
|
|
|
|
|
# compute matrix b and matrix d
|
|
|
|
# (batch, head, time1, time2)
|
|
|
|
matrix_bd = paddle.matmul(q_with_bias_v, p.transpose([0, 1, 3, 2]))
|
|
|
|
# Remove rel_shift since it is useless in speech recognition,
|
|
|
|
# and it requires special attention for streaming.
|
|
|
|
# matrix_bd = self.rel_shift(matrix_bd)
|
|
|
|
|
|
|
|
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
|
|
|
self.d_k) # (batch, head, time1, time2)
|
|
|
|
|
|
|
|
return self.forward_attention(v, scores, mask)
|