(简体中文|[English](./README.md))
# 语音合成
## 介绍
语音合成是一种自然语言建模过程,其将文本转换为语音以进行音频演示。
这个 demo 是一个从给定文本生成音频的实现,它可以通过使用 `PaddleSpeech` 的单个命令或 python 中的几行代码来实现。
## 使用方法
### 1. 安装
请看[安装文档](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.md)。
你可以从 easy, medium, hard 三种方式中选择一种方式安装。
### 2. 准备输入
这个 demo 的输入是通过参数传递的特定语言的文本。
### 3. 使用方法
- 命令行 (推荐使用)
默认的声学模型是 `Fastspeech2` ,默认的声码器是 `HiFiGAN` ,默认推理方式是动态图推理。
- 中文
```bash
paddlespeech tts --input "你好,欢迎使用百度飞桨深度学习框架!"
```
- 批处理
```bash
echo -e "1 欢迎光临。\n2 谢谢惠顾。" | paddlespeech tts
```
- 中文,使用 `SpeedySpeech` 作为声学模型
```bash
paddlespeech tts --am speedyspeech_csmsc --input "你好,欢迎使用百度飞桨深度学习框架!"
```
- 中文, 多说话人
你可以改变 `spk_id` 。
```bash
paddlespeech tts --am fastspeech2_aishell3 --voc pwgan_aishell3 --input "你好,欢迎使用百度飞桨深度学习框架!" --spk_id 0
```
- 英文
```bash
paddlespeech tts --am fastspeech2_ljspeech --voc pwgan_ljspeech --lang en --input "hello world"
```
- 英文,多说话人
你可以改变 `spk_id` 。
```bash
paddlespeech tts --am fastspeech2_vctk --voc pwgan_vctk --input "hello, boys" --lang en --spk_id 0
```
- 中英文混合,多说话人
你可以改变 `spk_id` 。
```bash
# The `am` must be `fastspeech2_mix` !
# The `lang` must be `mix` !
# The voc must be chinese datasets' voc now!
# spk 174 is csmcc, spk 175 is ljspeech
paddlespeech tts --am fastspeech2_mix --voc hifigan_csmsc --lang mix --input "热烈欢迎您在 Discussions 中提交问题,并在 Issues 中指出发现的 bug。此外, 我们非常希望您参与到 Paddle Speech 的开发中!" --spk_id 174 --output mix_spk174.wav
paddlespeech tts --am fastspeech2_mix --voc hifigan_aishell3 --lang mix --input "热烈欢迎您在 Discussions 中提交问题,并在 Issues 中指出发现的 bug。此外, 我们非常希望您参与到 Paddle Speech 的开发中!" --spk_id 174 --output mix_spk174_aishell3.wav
paddlespeech tts --am fastspeech2_mix --voc pwgan_csmsc --lang mix --input "我们的声学模型使用了 Fast Speech Two, 声码器使用了 Parallel Wave GAN and Hifi GAN." --spk_id 175 --output mix_spk175_pwgan.wav
paddlespeech tts --am fastspeech2_mix --voc hifigan_csmsc --lang mix --input "我们的声学模型使用了 Fast Speech Two, 声码器使用了 Parallel Wave GAN and Hifi GAN." --spk_id 175 --output mix_spk175.wav
```
- 使用 ONNXRuntime 推理:
```bash
paddlespeech tts --input "你好,欢迎使用百度飞桨深度学习框架!" --output default.wav --use_onnx True
paddlespeech tts --am speedyspeech_csmsc --input "你好,欢迎使用百度飞桨深度学习框架!" --output ss.wav --use_onnx True
paddlespeech tts --voc mb_melgan_csmsc --input "你好,欢迎使用百度飞桨深度学习框架!" --output mb.wav --use_onnx True
paddlespeech tts --voc pwgan_csmsc --input "你好,欢迎使用百度飞桨深度学习框架!" --output pwgan.wav --use_onnx True
paddlespeech tts --am fastspeech2_aishell3 --voc pwgan_aishell3 --input "你好,欢迎使用百度飞桨深度学习框架!" --spk_id 0 --output aishell3_fs2_pwgan.wav --use_onnx True
paddlespeech tts --am fastspeech2_aishell3 --voc hifigan_aishell3 --input "你好,欢迎使用百度飞桨深度学习框架!" --spk_id 0 --output aishell3_fs2_hifigan.wav --use_onnx True
paddlespeech tts --am fastspeech2_ljspeech --voc pwgan_ljspeech --lang en --input "Life was like a box of chocolates, you never know what you're gonna get." --output lj_fs2_pwgan.wav --use_onnx True
paddlespeech tts --am fastspeech2_ljspeech --voc hifigan_ljspeech --lang en --input "Life was like a box of chocolates, you never know what you're gonna get." --output lj_fs2_hifigan.wav --use_onnx True
paddlespeech tts --am fastspeech2_vctk --voc pwgan_vctk --input "Life was like a box of chocolates, you never know what you're gonna get." --lang en --spk_id 0 --output vctk_fs2_pwgan.wav --use_onnx True
paddlespeech tts --am fastspeech2_vctk --voc hifigan_vctk --input "Life was like a box of chocolates, you never know what you're gonna get." --lang en --spk_id 0 --output vctk_fs2_hifigan.wav --use_onnx True
```
使用方法:
```bash
paddlespeech tts --help
```
参数:
- `input` (必须输入):用于合成音频的文本。
- `am` : TTS 任务的声学模型, 默认值:`fastspeech2_csmsc`。
- `am_config` :声学模型的配置文件,若不设置则使用默认配置,默认值:`None`。
- `am_ckpt` :声学模型的参数文件,若不设置则下载预训练模型使用,默认值:`None`。
- `am_stat` :训练声学模型时用于正则化 mel 频谱图的均值标准差文件,默认值:`None`。
- `phones_dict` :音素词表文件, 默认值:`None`。
- `tones_dict` :声调词表文件, 默认值:`None`。
- `speaker_dict` :说话人词表文件, 默认值:`None`。
- `spk_id` :说话人 id, 默认值: `0` 。
- `voc` : TTS 任务的声码器, 默认值: `pwgan_csmsc` 。
- `voc_config` :声码器的配置文件,若不设置则使用默认配置,默认值:`None`。
- `voc_ckpt` :声码器的参数文件,若不设置则下载预训练模型使用,默认值:`None`。
- `voc_stat` :训练声码器时用于正则化 mel 频谱图的均值标准差文件,默认值:`None`。
- `lang` : TTS 任务的语言, 默认值:`zh`。
- `device` :执行预测的设备, 默认值:当前系统下 paddlepaddle 的默认 device。
- `output` :输出音频的路径, 默认值:`output.wav`。
- `use_onnx` : 是否使用 ONNXRuntime 进行推理。
- `fs` : 使用特定 ONNX 模型时的采样率。
输出:
```bash
[2021-12-09 20:49:58,955] [ INFO] [log.py] [L57] - Wave file has been generated: output.wav
```
- Python API
- 动态图推理:
```python
import paddle
from paddlespeech.cli.tts import TTSExecutor
tts_executor = TTSExecutor()
wav_file = tts_executor(
text='今天的天气不错啊',
output='output.wav',
am='fastspeech2_csmsc',
am_config=None,
am_ckpt=None,
am_stat=None,
spk_id=0,
phones_dict=None,
tones_dict=None,
speaker_dict=None,
voc='pwgan_csmsc',
voc_config=None,
voc_ckpt=None,
voc_stat=None,
lang='zh',
device=paddle.get_device())
print('Wave file has been generated: {}'.format(wav_file))
```
- ONNXRuntime 推理:
```python
from paddlespeech.cli.tts import TTSExecutor
tts_executor = TTSExecutor()
wav_file = tts_executor(
text='对数据集进行预处理',
output='output.wav',
am='fastspeech2_csmsc',
voc='hifigan_csmsc',
lang='zh',
use_onnx=True,
cpu_threads=2)
```
输出:
```bash
Wave file has been generated: output.wav
```
### 4. 预训练模型
以下是 PaddleSpeech 提供的可以被命令行和 python API 使用的预训练模型列表:
- 声学模型
| 模型 | 语言 |
| :--- | :---: |
| speedyspeech_csmsc | zh |
| fastspeech2_csmsc | zh |
| fastspeech2_ljspeech | en |
| fastspeech2_aishell3 | zh |
| fastspeech2_vctk | en |
| fastspeech2_cnndecoder_csmsc | zh |
| fastspeech2_mix | mix |
| tacotron2_csmsc | zh |
| tacotron2_ljspeech | en |
- 声码器
| 模型 | 语言 |
| :--- | :---: |
| pwgan_csmsc | zh |
| pwgan_ljspeech | en |
| pwgan_aishell3 | zh |
| pwgan_vctk | en |
| mb_melgan_csmsc | zh |
| style_melgan_csmsc | zh |
| hifigan_csmsc | zh |
| hifigan_ljspeech | en |
| hifigan_aishell3 | zh |
| hifigan_vctk | en |
| wavernn_csmsc | zh |