|
|
|
"""Beam search parameters tuning for DeepSpeech2 model."""
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import argparse
|
|
|
|
import functools
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
import _init_paths
|
|
|
|
from data_utils.data import DataGenerator
|
|
|
|
from model_utils.model import DeepSpeech2Model
|
|
|
|
from utils.error_rate import wer
|
|
|
|
from utils.utility import add_arguments, print_arguments
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
|
|
add_arg = functools.partial(add_arguments, argparser=parser)
|
|
|
|
# yapf: disable
|
|
|
|
add_arg('num_samples', int, 100, "# of samples to infer.")
|
|
|
|
add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).")
|
|
|
|
add_arg('beam_size', int, 500, "Beam search width.")
|
|
|
|
add_arg('num_proc_bsearch', int, 12, "# of CPUs for beam search.")
|
|
|
|
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
|
|
|
|
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
|
|
|
|
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
|
|
|
|
add_arg('num_alphas', int, 14, "# of alpha candidates for tuning.")
|
|
|
|
add_arg('num_betas', int, 20, "# of beta candidates for tuning.")
|
|
|
|
add_arg('alpha_from', float, 0.1, "Where alpha starts tuning from.")
|
|
|
|
add_arg('alpha_to', float, 0.36, "Where alpha ends tuning with.")
|
|
|
|
add_arg('beta_from', float, 0.05, "Where beta starts tuning from.")
|
|
|
|
add_arg('beta_to', float, 1.0, "Where beta ends tuning with.")
|
|
|
|
add_arg('cutoff_prob', float, 0.99, "Cutoff probability for pruning.")
|
|
|
|
add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.")
|
|
|
|
add_arg('use_gpu', bool, True, "Use GPU or not.")
|
|
|
|
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
|
|
|
|
"bi-directional RNNs. Not for GRU.")
|
|
|
|
add_arg('tune_manifest', str,
|
|
|
|
'data/librispeech/manifest.dev',
|
|
|
|
"Filepath of manifest to tune.")
|
|
|
|
add_arg('mean_std_path', str,
|
|
|
|
'data/librispeech/mean_std.npz',
|
|
|
|
"Filepath of normalizer's mean & std.")
|
|
|
|
add_arg('vocab_path', str,
|
|
|
|
'data/librispeech/vocab.txt',
|
|
|
|
"Filepath of vocabulary.")
|
|
|
|
add_arg('lang_model_path', str,
|
|
|
|
'models/lm/common_crawl_00.prune01111.trie.klm',
|
|
|
|
"Filepath for language model.")
|
|
|
|
add_arg('model_path', str,
|
|
|
|
'./checkpoints/libri/params.latest.tar.gz',
|
|
|
|
"If None, the training starts from scratch, "
|
|
|
|
"otherwise, it resumes from the pre-trained model.")
|
|
|
|
add_arg('error_rate_type', str,
|
|
|
|
'wer',
|
|
|
|
"Error rate type for evaluation.",
|
|
|
|
choices=['wer', 'cer'])
|
|
|
|
add_arg('specgram_type', str,
|
|
|
|
'linear',
|
|
|
|
"Audio feature type. Options: linear, mfcc.",
|
|
|
|
choices=['linear', 'mfcc'])
|
|
|
|
# yapf: disable
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
def tune():
|
|
|
|
"""Tune parameters alpha and beta on one minibatch."""
|
|
|
|
if not args.num_alphas >= 0:
|
|
|
|
raise ValueError("num_alphas must be non-negative!")
|
|
|
|
if not args.num_betas >= 0:
|
|
|
|
raise ValueError("num_betas must be non-negative!")
|
|
|
|
|
|
|
|
data_generator = DataGenerator(
|
|
|
|
vocab_filepath=args.vocab_path,
|
|
|
|
mean_std_filepath=args.mean_std_path,
|
|
|
|
augmentation_config='{}',
|
|
|
|
specgram_type=args.specgram_type,
|
|
|
|
num_threads=1)
|
|
|
|
batch_reader = data_generator.batch_reader_creator(
|
|
|
|
manifest_path=args.tune_manifest,
|
|
|
|
batch_size=args.num_samples,
|
|
|
|
sortagrad=False,
|
|
|
|
shuffle_method=None)
|
|
|
|
tune_data = batch_reader().next()
|
|
|
|
target_transcripts = [
|
|
|
|
''.join([data_generator.vocab_list[token] for token in transcript])
|
|
|
|
for _, transcript in tune_data
|
|
|
|
]
|
|
|
|
|
|
|
|
ds2_model = DeepSpeech2Model(
|
|
|
|
vocab_size=data_generator.vocab_size,
|
|
|
|
num_conv_layers=args.num_conv_layers,
|
|
|
|
num_rnn_layers=args.num_rnn_layers,
|
|
|
|
rnn_layer_size=args.rnn_layer_size,
|
|
|
|
use_gru=args.use_gru,
|
|
|
|
pretrained_model_path=args.model_path,
|
|
|
|
share_rnn_weights=args.share_rnn_weights)
|
|
|
|
|
|
|
|
# create grid for search
|
|
|
|
cand_alphas = np.linspace(args.alpha_from, args.alpha_to, args.num_alphas)
|
|
|
|
cand_betas = np.linspace(args.beta_from, args.beta_to, args.num_betas)
|
|
|
|
params_grid = [(alpha, beta) for alpha in cand_alphas
|
|
|
|
for beta in cand_betas]
|
|
|
|
|
|
|
|
## tune parameters in loop
|
|
|
|
for alpha, beta in params_grid:
|
|
|
|
result_transcripts = ds2_model.infer_batch(
|
|
|
|
infer_data=tune_data,
|
|
|
|
decoding_method='ctc_beam_search',
|
|
|
|
beam_alpha=alpha,
|
|
|
|
beam_beta=beta,
|
|
|
|
beam_size=args.beam_size,
|
|
|
|
cutoff_prob=args.cutoff_prob,
|
|
|
|
vocab_list=data_generator.vocab_list,
|
|
|
|
language_model_path=args.lang_model_path,
|
|
|
|
num_processes=args.num_proc_bsearch)
|
|
|
|
wer_sum, num_ins = 0.0, 0
|
|
|
|
for target, result in zip(target_transcripts, result_transcripts):
|
|
|
|
wer_sum += wer(target, result)
|
|
|
|
num_ins += 1
|
|
|
|
print("alpha = %f\tbeta = %f\tWER = %f" %
|
|
|
|
(alpha, beta, wer_sum / num_ins))
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
print_arguments(args)
|
|
|
|
paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
|
|
|
|
tune()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|