|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
from datetime import datetime
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Any
|
|
|
|
from typing import Dict
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import jsonlines
|
|
|
|
|
|
|
|
from . import extension
|
|
|
|
from ..reporter import get_observations
|
|
|
|
from ..updaters.trainer import Trainer
|
|
|
|
from deepspeech.utils.log import Log
|
|
|
|
from deepspeech.utils.mp_tools import rank_zero_only
|
|
|
|
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
|
|
|
|
|
|
def load_records(records_fp):
|
|
|
|
"""Load record files (json lines.)"""
|
|
|
|
with jsonlines.open(records_fp, 'r') as reader:
|
|
|
|
records = list(reader)
|
|
|
|
return records
|
|
|
|
|
|
|
|
|
|
|
|
class Snapshot(extension.Extension):
|
|
|
|
"""An extension to make snapshot of the updater object inside
|
|
|
|
the trainer. It is done by calling the updater's `save` method.
|
|
|
|
An Updater save its state_dict by default, which contains the
|
|
|
|
updater state, (i.e. epoch and iteration) and all the model
|
|
|
|
parameters and optimizer states. If the updater inside the trainer
|
|
|
|
subclasses StandardUpdater, everything is good to go.
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
checkpoint_dir : Union[str, Path]
|
|
|
|
The directory to save checkpoints into.
|
|
|
|
"""
|
|
|
|
|
|
|
|
trigger = (1, 'epoch')
|
|
|
|
priority = -100
|
|
|
|
default_name = "snapshot"
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
mode='latest',
|
|
|
|
max_size: int=5,
|
|
|
|
indicator=None,
|
|
|
|
less_better=True,
|
|
|
|
snapshot_on_error: bool=False):
|
|
|
|
self.records: List[Dict[str, Any]] = []
|
|
|
|
assert mode in ('latest', 'kbest'), mode
|
|
|
|
if mode == 'kbest':
|
|
|
|
assert indicator is not None
|
|
|
|
self.mode = mode
|
|
|
|
self.indicator = indicator
|
|
|
|
self.less_is_better = less_better
|
|
|
|
self.max_size = max_size
|
|
|
|
self._snapshot_on_error = snapshot_on_error
|
|
|
|
self._save_all = (max_size == -1)
|
|
|
|
self.checkpoint_dir = None
|
|
|
|
|
|
|
|
def initialize(self, trainer: Trainer):
|
|
|
|
"""Setting up this extention."""
|
|
|
|
self.checkpoint_dir = trainer.out / "checkpoints"
|
|
|
|
|
|
|
|
# load existing records
|
|
|
|
record_path: Path = self.checkpoint_dir / "records.jsonl"
|
|
|
|
if record_path.exists():
|
|
|
|
self.records = load_records(record_path)
|
|
|
|
ckpt_path = self.records[-1]['path']
|
|
|
|
logger.info(f"Loading from an existing checkpoint {ckpt_path}")
|
|
|
|
trainer.updater.load(ckpt_path)
|
|
|
|
|
|
|
|
def on_error(self, trainer, exc, tb):
|
|
|
|
if self._snapshot_on_error:
|
|
|
|
self.save_checkpoint_and_update(trainer, 'latest')
|
|
|
|
|
|
|
|
def __call__(self, trainer: Trainer):
|
|
|
|
self.save_checkpoint_and_update(trainer, self.mode)
|
|
|
|
|
|
|
|
def full(self):
|
|
|
|
"""Whether the number of snapshots it keeps track of is greater
|
|
|
|
than the max_size."""
|
|
|
|
return (not self._save_all) and len(self.records) > self.max_size
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
def save_checkpoint_and_update(self, trainer: Trainer, mode: str):
|
|
|
|
"""Saving new snapshot and remove the oldest snapshot if needed."""
|
|
|
|
iteration = trainer.updater.state.iteration
|
|
|
|
epoch = trainer.updater.state.epoch
|
|
|
|
num = epoch if self.trigger[1] == 'epoch' else iteration
|
|
|
|
path = self.checkpoint_dir / f"{num}.np"
|
|
|
|
|
|
|
|
# add the new one
|
|
|
|
trainer.updater.save(path)
|
|
|
|
record = {
|
|
|
|
"time": str(datetime.now()),
|
|
|
|
'path': str(path.resolve()), # use absolute path
|
|
|
|
'iteration': iteration,
|
|
|
|
'epoch': epoch,
|
|
|
|
'indicator': get_observations()[self.indicator]
|
|
|
|
}
|
|
|
|
self.records.append(record)
|
|
|
|
|
|
|
|
# remove the earist
|
|
|
|
if self.full():
|
|
|
|
if mode == 'kbest':
|
|
|
|
self.records = sorted(
|
|
|
|
self.records,
|
|
|
|
key=lambda record: record['indicator'],
|
|
|
|
reverse=not self.less_is_better)
|
|
|
|
eariest_record = self.records[0]
|
|
|
|
os.remove(eariest_record["path"])
|
|
|
|
self.records.pop(0)
|
|
|
|
|
|
|
|
# update the record file
|
|
|
|
record_path = self.checkpoint_dir / "records.jsonl"
|
|
|
|
with jsonlines.open(record_path, 'w') as writer:
|
|
|
|
for record in self.records:
|
|
|
|
# jsonlines.open may return a Writer or a Reader
|
|
|
|
writer.write(record) # pylint: disable=no-member
|