|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Modified from wenet(https://github.com/wenet-e2e/wenet)
|
|
|
|
from contextlib import nullcontext
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
from paddle import distributed as dist
|
|
|
|
|
|
|
|
from paddlespeech.s2t.training.extensions.evaluator import StandardEvaluator
|
|
|
|
from paddlespeech.s2t.training.reporter import report
|
|
|
|
from paddlespeech.s2t.training.timer import Timer
|
|
|
|
from paddlespeech.s2t.training.updaters.standard_updater import StandardUpdater
|
|
|
|
from paddlespeech.s2t.utils import layer_tools
|
|
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
|
|
|
|
|
|
class U2Evaluator(StandardEvaluator):
|
|
|
|
def __init__(self, model, dataloader):
|
|
|
|
super().__init__(model, dataloader)
|
|
|
|
self.msg = ""
|
|
|
|
self.num_seen_utts = 0
|
|
|
|
self.total_loss = 0.0
|
|
|
|
|
|
|
|
def evaluate_core(self, batch):
|
|
|
|
self.msg = "Valid: Rank: {}, ".format(dist.get_rank())
|
|
|
|
losses_dict = {}
|
|
|
|
|
|
|
|
loss, attention_loss, ctc_loss = self.model(*batch[1:])
|
|
|
|
if paddle.isfinite(loss):
|
|
|
|
num_utts = batch[1].shape[0]
|
|
|
|
self.num_seen_utts += num_utts
|
|
|
|
self.total_loss += float(loss) * num_utts
|
|
|
|
|
|
|
|
losses_dict['loss'] = float(loss)
|
|
|
|
if attention_loss:
|
|
|
|
losses_dict['att_loss'] = float(attention_loss)
|
|
|
|
if ctc_loss:
|
|
|
|
losses_dict['ctc_loss'] = float(ctc_loss)
|
|
|
|
|
|
|
|
for k, v in losses_dict.items():
|
|
|
|
report("eval/" + k, v)
|
|
|
|
|
|
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
|
|
for k, v in losses_dict.items())
|
|
|
|
logger.info(self.msg)
|
|
|
|
return self.total_loss, self.num_seen_utts
|
|
|
|
|
|
|
|
|
|
|
|
class U2Updater(StandardUpdater):
|
|
|
|
def __init__(self,
|
|
|
|
model,
|
|
|
|
optimizer,
|
|
|
|
scheduler,
|
|
|
|
dataloader,
|
|
|
|
init_state=None,
|
|
|
|
accum_grad=1,
|
|
|
|
**kwargs):
|
|
|
|
super().__init__(
|
|
|
|
model, optimizer, scheduler, dataloader, init_state=init_state)
|
|
|
|
self.accum_grad = accum_grad
|
|
|
|
self.forward_count = 0
|
|
|
|
self.msg = ""
|
|
|
|
|
|
|
|
def update_core(self, batch):
|
|
|
|
"""One Step
|
|
|
|
|
|
|
|
Args:
|
|
|
|
batch (List[Object]): utts, xs, xlens, ys, ylens
|
|
|
|
"""
|
|
|
|
losses_dict = {}
|
|
|
|
self.msg = "Rank: {}, ".format(dist.get_rank())
|
|
|
|
|
|
|
|
# forward
|
|
|
|
batch_size = batch[1].shape[0]
|
|
|
|
loss, attention_loss, ctc_loss = self.model(*batch[1:])
|
|
|
|
# loss div by `batch_size * accum_grad`
|
|
|
|
loss /= self.accum_grad
|
|
|
|
|
|
|
|
# loss backward
|
|
|
|
if (self.forward_count + 1) != self.accum_grad:
|
|
|
|
# Disable gradient synchronizations across DDP processes.
|
|
|
|
# Within this context, gradients will be accumulated on module
|
|
|
|
# variables, which will later be synchronized.
|
|
|
|
context = self.model.no_sync
|
|
|
|
else:
|
|
|
|
# Used for single gpu training and DDP gradient synchronization
|
|
|
|
# processes.
|
|
|
|
context = nullcontext
|
|
|
|
|
|
|
|
with context():
|
|
|
|
loss.backward()
|
|
|
|
layer_tools.print_grads(self.model, print_func=None)
|
|
|
|
|
|
|
|
# loss info
|
|
|
|
losses_dict['loss'] = float(loss) * self.accum_grad
|
|
|
|
if attention_loss:
|
|
|
|
losses_dict['att_loss'] = float(attention_loss)
|
|
|
|
if ctc_loss:
|
|
|
|
losses_dict['ctc_loss'] = float(ctc_loss)
|
|
|
|
# report loss
|
|
|
|
for k, v in losses_dict.items():
|
|
|
|
report("train/" + k, v)
|
|
|
|
# loss msg
|
|
|
|
self.msg += "batch size: {}, ".format(batch_size)
|
|
|
|
self.msg += "accum: {}, ".format(self.accum_grad)
|
|
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
|
|
for k, v in losses_dict.items())
|
|
|
|
|
|
|
|
# Truncate the graph
|
|
|
|
loss.detach()
|
|
|
|
|
|
|
|
# update parameters
|
|
|
|
self.forward_count += 1
|
|
|
|
if self.forward_count != self.accum_grad:
|
|
|
|
return
|
|
|
|
self.forward_count = 0
|
|
|
|
|
|
|
|
self.optimizer.step()
|
|
|
|
self.optimizer.clear_grad()
|
|
|
|
self.scheduler.step()
|
|
|
|
|
|
|
|
def update(self):
|
|
|
|
# model is default in train mode
|
|
|
|
|
|
|
|
# training for a step is implemented here
|
|
|
|
with Timer("data time cost:{}"):
|
|
|
|
batch = self.read_batch()
|
|
|
|
with Timer("step time cost:{}"):
|
|
|
|
self.update_core(batch)
|
|
|
|
|
|
|
|
# #iterations with accum_grad > 1
|
|
|
|
# Ref.: https://github.com/espnet/espnet/issues/777
|
|
|
|
if self.forward_count == 0:
|
|
|
|
self.state.iteration += 1
|
|
|
|
if self.updates_per_epoch is not None:
|
|
|
|
if self.state.iteration % self.updates_per_epoch == 0:
|
|
|
|
self.state.epoch += 1
|