You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/models/wav2vec2/modules/linear.py

73 lines
2.0 KiB

"""Library implementing linear transformation.
Authors
* Mirco Ravanelli 2020
* Davide Borra 2021
"""
import logging
import paddle
from paddlespeech.s2t.modules import align
logger = logging.getLogger(__name__)
class Linear(paddle.nn.Layer):
"""Computes a linear transformation y = wx + b.
Arguments
---------
n_neurons : int
It is the number of output neurons (i.e, the dimensionality of the
output).
input_shape: tuple
It is the shape of the input tensor.
input_size: int
Size of the input tensor.
bias : bool
If True, the additive bias b is adopted.
combine_dims : bool
If True and the input is 4D, combine 3rd and 4th dimensions of input.
Example
-------
>>> inputs = paddle.rand(10, 50, 40)
>>> lin_t = Linear(input_shape=(10, 50, 40), n_neurons=100)
>>> output = lin_t(inputs)
>>> output.shape
paddle.shape([10, 50, 100])
"""
def __init__(
self,
n_neurons,
input_shape=None,
input_size=None,
bias=True,
combine_dims=False, ):
super().__init__()
self.combine_dims = combine_dims
if input_shape is None and input_size is None:
raise ValueError("Expected one of input_shape or input_size")
if input_size is None:
input_size = input_shape[-1]
if len(input_shape) == 4 and self.combine_dims:
input_size = input_shape[2] * input_shape[3]
# Weights are initialized following paddle approach
self.w = align.Linear(input_size, n_neurons, bias_attr=bias)
def forward(self, x):
"""Returns the linear transformation of input tensor.
Arguments
---------
x : paddle.Tensor
Input to transform linearly.
"""
if x.rank == 4 and self.combine_dims:
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3])
wx = self.w(x)
return wx