|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
|
|
import importlib
|
|
|
|
import inspect
|
|
|
|
from typing import Any
|
|
|
|
from typing import Dict
|
|
|
|
from typing import List
|
|
|
|
from typing import Text
|
|
|
|
|
|
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
from paddlespeech.s2t.utils.tensor_utils import has_tensor
|
|
|
|
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
|
|
__all__ = ["dynamic_import", "instance_class"]
|
|
|
|
|
|
|
|
|
|
|
|
def dynamic_import(import_path, alias=dict()):
|
|
|
|
"""dynamic import module and class
|
|
|
|
|
|
|
|
:param str import_path: syntax 'module_name:class_name'
|
|
|
|
e.g., 'paddlespeech.s2t.models.u2:U2Model'
|
|
|
|
:param dict alias: shortcut for registered class
|
|
|
|
:return: imported class
|
|
|
|
"""
|
|
|
|
if import_path not in alias and ":" not in import_path:
|
|
|
|
raise ValueError(
|
|
|
|
"import_path should be one of {} or "
|
|
|
|
'include ":", e.g. "paddlespeech.s2t.models.u2:U2Model" : '
|
|
|
|
"{}".format(set(alias), import_path))
|
|
|
|
if ":" not in import_path:
|
|
|
|
import_path = alias[import_path]
|
|
|
|
|
|
|
|
module_name, objname = import_path.split(":")
|
|
|
|
m = importlib.import_module(module_name)
|
|
|
|
return getattr(m, objname)
|
|
|
|
|
|
|
|
|
|
|
|
def filter_valid_args(args: Dict[Text, Any], valid_keys: List[Text]):
|
|
|
|
# filter by `valid_keys` and filter `val` is not None
|
|
|
|
new_args = {
|
|
|
|
key: val
|
|
|
|
for key, val in args.items() if (key in valid_keys and val is not None)
|
|
|
|
}
|
|
|
|
return new_args
|
|
|
|
|
|
|
|
|
|
|
|
def filter_out_tenosr(args: Dict[Text, Any]):
|
|
|
|
return {key: val for key, val in args.items() if not has_tensor(val)}
|
|
|
|
|
|
|
|
|
|
|
|
def instance_class(module_class, args: Dict[Text, Any]):
|
|
|
|
valid_keys = inspect.signature(module_class).parameters.keys()
|
|
|
|
new_args = filter_valid_args(args, valid_keys)
|
|
|
|
logger.info(
|
|
|
|
f"Instance: {module_class.__name__} {filter_out_tenosr(new_args)}.")
|
|
|
|
return module_class(**new_args)
|