|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
import shutil
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import yaml
|
|
|
|
from paddle import DataParallel
|
|
|
|
from paddle import distributed as dist
|
|
|
|
from paddle import nn
|
|
|
|
from paddle.io import DataLoader
|
|
|
|
from paddle.optimizer import Adam
|
|
|
|
from paddle.optimizer.lr import ExponentialDecay
|
|
|
|
from yacs.config import CfgNode
|
|
|
|
|
|
|
|
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
|
|
|
|
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
|
|
|
|
from paddlespeech.t2s.training.seeding import seed_everything
|
|
|
|
from paddlespeech.t2s.training.trainer import Trainer
|
|
|
|
from paddlespeech.text.models.ernie_linear import ErnieLinear
|
|
|
|
from paddlespeech.text.models.ernie_linear import ErnieLinearEvaluator
|
|
|
|
from paddlespeech.text.models.ernie_linear import ErnieLinearUpdater
|
|
|
|
from paddlespeech.text.models.ernie_linear import PuncDataset
|
|
|
|
from paddlespeech.text.models.ernie_linear import PuncDatasetFromErnieTokenizer
|
|
|
|
|
|
|
|
DefinedClassifier = {
|
|
|
|
'ErnieLinear': ErnieLinear,
|
|
|
|
}
|
|
|
|
|
|
|
|
DefinedLoss = {
|
|
|
|
"ce": nn.CrossEntropyLoss,
|
|
|
|
}
|
|
|
|
|
|
|
|
DefinedDataset = {
|
|
|
|
'Punc': PuncDataset,
|
|
|
|
'Ernie': PuncDatasetFromErnieTokenizer,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def train_sp(args, config):
|
|
|
|
# decides device type and whether to run in parallel
|
|
|
|
# setup running environment correctly
|
|
|
|
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
|
|
|
|
paddle.set_device("cpu")
|
|
|
|
else:
|
|
|
|
paddle.set_device("gpu")
|
|
|
|
world_size = paddle.distributed.get_world_size()
|
|
|
|
if world_size > 1:
|
|
|
|
paddle.distributed.init_parallel_env()
|
|
|
|
|
|
|
|
# set the random seed, it is a must for multiprocess training
|
|
|
|
seed_everything(config.seed)
|
|
|
|
|
|
|
|
print(
|
|
|
|
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
|
|
|
|
)
|
|
|
|
# dataloader has been too verbose
|
|
|
|
logging.getLogger("DataLoader").disabled = True
|
|
|
|
train_dataset = DefinedDataset[config["dataset_type"]](
|
|
|
|
train_path=config["train_path"], **config["data_params"])
|
|
|
|
dev_dataset = DefinedDataset[config["dataset_type"]](
|
|
|
|
train_path=config["dev_path"], **config["data_params"])
|
|
|
|
train_dataloader = DataLoader(
|
|
|
|
train_dataset,
|
|
|
|
shuffle=True,
|
|
|
|
num_workers=config.num_workers,
|
|
|
|
batch_size=config.batch_size)
|
|
|
|
|
|
|
|
dev_dataloader = DataLoader(
|
|
|
|
dev_dataset,
|
|
|
|
batch_size=config.batch_size,
|
|
|
|
shuffle=False,
|
|
|
|
drop_last=False,
|
|
|
|
num_workers=config.num_workers)
|
|
|
|
|
|
|
|
print("dataloaders done!")
|
|
|
|
|
|
|
|
model = DefinedClassifier[config["model_type"]](**config["model"])
|
|
|
|
|
|
|
|
if world_size > 1:
|
|
|
|
model = DataParallel(model)
|
|
|
|
print("model done!")
|
|
|
|
|
|
|
|
criterion = DefinedLoss[config["loss_type"]](
|
|
|
|
**config["loss"]) if "loss_type" in config else DefinedLoss["ce"]()
|
|
|
|
|
|
|
|
print("criterions done!")
|
|
|
|
|
|
|
|
lr_schedule = ExponentialDecay(**config["scheduler_params"])
|
|
|
|
optimizer = Adam(
|
|
|
|
learning_rate=lr_schedule,
|
|
|
|
parameters=model.parameters(),
|
|
|
|
weight_decay=paddle.regularizer.L2Decay(
|
|
|
|
config["optimizer_params"]["weight_decay"]))
|
|
|
|
|
|
|
|
print("optimizer done!")
|
|
|
|
|
|
|
|
output_dir = Path(args.output_dir)
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
if dist.get_rank() == 0:
|
|
|
|
config_name = args.config.split("/")[-1]
|
|
|
|
# copy conf to output_dir
|
|
|
|
shutil.copyfile(args.config, output_dir / config_name)
|
|
|
|
|
|
|
|
updater = ErnieLinearUpdater(
|
|
|
|
model=model,
|
|
|
|
criterion=criterion,
|
|
|
|
scheduler=lr_schedule,
|
|
|
|
optimizer=optimizer,
|
|
|
|
dataloader=train_dataloader,
|
|
|
|
output_dir=output_dir)
|
|
|
|
|
|
|
|
trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir)
|
|
|
|
|
|
|
|
evaluator = ErnieLinearEvaluator(
|
|
|
|
model=model,
|
|
|
|
criterion=criterion,
|
|
|
|
dataloader=dev_dataloader,
|
|
|
|
output_dir=output_dir)
|
|
|
|
|
|
|
|
if dist.get_rank() == 0:
|
|
|
|
trainer.extend(evaluator, trigger=(1, "epoch"))
|
|
|
|
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
|
|
|
|
trainer.extend(
|
|
|
|
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
|
|
|
|
trainer.run()
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
# parse args and config and redirect to train_sp
|
|
|
|
parser = argparse.ArgumentParser(description="Train a ErnieLinear model.")
|
|
|
|
parser.add_argument("--config", type=str, help="ErnieLinear config file.")
|
|
|
|
parser.add_argument("--output-dir", type=str, help="output dir.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--ngpu", type=int, default=1, help="if ngpu=0, use cpu.")
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
with open(args.config) as f:
|
|
|
|
config = CfgNode(yaml.safe_load(f))
|
|
|
|
|
|
|
|
print("========Args========")
|
|
|
|
print(yaml.safe_dump(vars(args)))
|
|
|
|
print("========Config========")
|
|
|
|
print(config)
|
|
|
|
print(
|
|
|
|
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
|
|
|
|
)
|
|
|
|
|
|
|
|
# dispatch
|
|
|
|
if args.ngpu > 1:
|
|
|
|
dist.spawn(train_sp, (args, config), nprocs=args.ngpu)
|
|
|
|
else:
|
|
|
|
train_sp(args, config)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|