You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/third_party/python-pinyin/pypinyin/seg/mmseg.py

126 lines
4.4 KiB

E2E/Streaming Transformer/Conformer ASR (#578) * add cmvn and label smoothing loss layer * add layer for transformer * add glu and conformer conv * add torch compatiable hack, mask funcs * not hack size since it exists * add test; attention * add attention, common utils, hack paddle * add audio utils * conformer batch padding mask bug fix #223 * fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2 * fix ci * fix ci * add encoder * refactor egs * add decoder * refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils * refactor docs * add fix * fix readme * fix bugs, refactor collator, add pad_sequence, fix ckpt bugs * fix docstring * refactor data feed order * add u2 model * refactor cmvn, test * add utils * add u2 config * fix bugs * fix bugs * fix autograd maybe has problem when using inplace operation * refactor data, build vocab; add format data * fix text featurizer * refactor build vocab * add fbank, refactor feature of speech * refactor audio feat * refactor data preprare * refactor data * model init from config * add u2 bins * flake8 * can train * fix bugs, add coverage, add scripts * test can run * fix data * speed perturb with sox * add spec aug * fix for train * fix train logitc * fix logger * log valid loss, time dataset process * using np for speed perturb, remove some debug log of grad clip * fix logger * fix build vocab * fix logger name * using module logger as default * fix * fix install * reorder imports * fix board logger * fix logger * kaldi fbank and mfcc * fix cmvn and print prarams * fix add_eos_sos and cmvn * fix cmvn compute * fix logger and cmvn * fix subsampling, label smoothing loss, remove useless * add notebook test * fix log * fix tb logger * multi gpu valid * fix log * fix log * fix config * fix compute cmvn, need paddle 2.1 * add cmvn notebook * fix layer tools * fix compute cmvn * add rtf * fix decoding * fix layer tools * fix log, add avg script * more avg and test info * fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh; * add vimrc * refactor tiny script, add transformer and stream conf * spm demo; librisppech scripts and confs * fix log * add librispeech scripts * refactor data pipe; fix conf; fix u2 default params * fix bugs * refactor aishell scripts * fix test * fix cmvn * fix s0 scripts * fix ds2 scripts and bugs * fix dev & test dataset filter * fix dataset filter * filter dev * fix ckpt path * filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test * add comment * add syllable doc * fix ds2 configs * add doc * add pypinyin tools * fix decoder using blank_id=0 * mmseg with pybind11 * format code
4 years ago
from typing import Iterator
from typing import Text
from pypinyin.constants import PHRASES_DICT
"""
MMSEG: A Word Identification System for Mandarin Chinese Text Based on Two Variants of the Maximum Matching Algorithm
最大正向匹配分词
http://technology.chtsai.org/mmseg/
https://www.jianshu.com/p/e4ae8d194487
"""
class PrefixSet():
def __init__(self):
self._set = set()
def train(self, word_s: Iterator[Text]):
"""更新 prefix set
:param word_s: 词语库列表
:type word_s: iterable
:return: None
"""
for word in word_s:
# 把词语的每个前缀更新到 prefix_set 中
for index in range(len(word)):
self._set.add(word[:index + 1])
def __contains__(self, key: Text) -> bool:
return key in self._set
class Seg():
"""正向最大匹配分词(Simple)
简单的正向最大匹配即按能匹配上的最长词做切分
:type prefix_set: PrefixSet
:param strict_phrases: 是否严格按照词语分词不允许把非词语的词当做词语进行分词 False, 不严格 True, 严格
:type strict_phrases: bool
"""
def __init__(self, prefix_set: PrefixSet,
strict_phrases: bool=False) -> None:
self._prefix_set = prefix_set
self._strict_phrases = strict_phrases
def cut(self, text: Text) -> Iterator[Text]:
"""分词
:param text: 待分词的文本
:yield: 单个词语
"""
remain = text
while remain:
matched = ''
# 一次加一个字的匹配
for index in range(len(remain)):
word = remain[:index + 1]
if word in self._prefix_set:
matched = word
else:
# 前面的字符串是个词语
if (matched and ((not self._strict_phrases) or
matched in PHRASES_DICT)):
yield matched
matched = ''
remain = remain[index:]
else: # 前面为空或不是真正的词语
# 严格按照词语分词的情况下,不是词语的词拆分为单个汉字
# 先返回第一个字,后面的重新参与分词,
# 处理前缀匹配导致无法识别输入尾部的词语,
# 支持简单的逆向匹配分词:
# 已有词语:金融寡头 行业
# 输入:金融行业
# 输出:金 融 行业
if self._strict_phrases:
yield word[0]
remain = remain[index + 1 - len(word) + 1:]
else:
yield word
remain = remain[index + 1:]
# 有结果了,剩余的重新开始匹配
matched = ''
break
else: # 整个文本就是一个词语,或者不包含任何词语
if self._strict_phrases and remain not in PHRASES_DICT:
for x in remain:
yield x
else:
yield remain
break
def train(self, words: Iterator[Text]):
"""训练分词器
:param words: 词语列表
"""
self._prefix_set.train(words)
p_set = PrefixSet()
p_set.train(PHRASES_DICT.keys())
#: 基于内置词库的(简单)最大正向匹配分词器。使用:
#:
#: .. code-block:: python
#:
#: >>> from pinyin.seg.mmseg import Seg
#: >>> text = '你好,我是中国人,我爱我的祖国'
#: >>> seg.cut(text)
#: <generator object Seg.cut at 0x10b2df2b0>
#: >>> list(seg.cut(text))
#: ['你好', '', '我', '是', '中国人', '', '我', '爱',
#: '我的', '祖', '国']
#: >>> seg.train(['祖国', '我是'])
#: >>> list(seg.cut(text))
#: ['你好', '', '我是', '中国人', '', '我', '爱',
#: '我的', '祖国']
#: >>>
seg = Seg(p_set, strict_phrases=True)
def retrain(seg_instance: Seg):
"""重新使用内置词典训练 seg_instance。
比如在增加自定义词语信息后需要调用这个模块重新训练分词器
:type seg_instance: Seg
"""
seg_instance.train(PHRASES_DICT.keys())