|
|
|
#!/bin/bash
|
|
|
|
set -e
|
|
|
|
. ./path.sh || exit 1;
|
|
|
|
. ./cmd.sh || exit 1;
|
|
|
|
|
|
|
|
gpus=0,1,2,3
|
|
|
|
stage=1
|
|
|
|
stop_stage=4
|
|
|
|
conf_path=conf/transformer_mtl_noam.yaml
|
|
|
|
ips= #xx.xx.xx.xx,xx.xx.xx.xx
|
|
|
|
decode_conf_path=conf/tuning/decode.yaml
|
|
|
|
ckpt_path= # paddle.98 # (finetune from FAT-ST pretrained model)
|
|
|
|
avg_num=5
|
|
|
|
data_path=./TED_EnZh # path to unzipped data
|
|
|
|
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
|
|
|
|
|
|
|
|
avg_ckpt=avg_${avg_num}
|
|
|
|
ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}')
|
|
|
|
echo "checkpoint name ${ckpt}"
|
|
|
|
|
|
|
|
|
|
|
|
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
|
|
|
# prepare data
|
|
|
|
bash ./local/data.sh --data_dir ${data_path} || exit -1
|
|
|
|
fi
|
|
|
|
|
|
|
|
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
|
|
|
# train model, all `ckpt` under `exp` dir
|
|
|
|
if [ -n "${ckpt_path}" ]; then
|
|
|
|
echo "Finetune from Pretrained Model" ${ckpt_path}
|
|
|
|
./local/download_pretrain.sh || exit -1
|
|
|
|
fi
|
|
|
|
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt} "${ckpt_path}" ${ips}
|
|
|
|
fi
|
|
|
|
|
|
|
|
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
|
|
|
# avg n best model
|
|
|
|
avg.sh best exp/${ckpt}/checkpoints ${avg_num}
|
|
|
|
fi
|
|
|
|
|
|
|
|
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
|
|
|
# test ckpt avg_n
|
|
|
|
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
|
|
|
|
fi
|