You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/docs/topic/ctc/ctc_loss_compare.ipynb

517 lines
14 KiB

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ff6ff1e0",
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "33af5f76",
"metadata": {},
"outputs": [],
"source": [
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9b566b73",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"fatal: destination path 'warp-ctc' already exists and is not an empty directory.\r\n"
]
}
],
"source": [
"!git clone https://github.com/SeanNaren/warp-ctc.git"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4a087a09",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/workspace/zhanghui/DeepSpeech-2.x/docs/topic/ctc/warp-ctc\n"
]
}
],
"source": [
"%cd warp-ctc"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "f55dc29a",
"metadata": {},
"outputs": [],
"source": [
"mkdir -p build"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fe79f4cf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/workspace/zhanghui/DeepSpeech-2.x/docs/topic/ctc/warp-ctc/build\n"
]
}
],
"source": [
"cd build"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3d25c718",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"-- cuda found TRUE\n",
"-- Building shared library with GPU support\n",
"-- Configuring done\n",
"-- Generating done\n",
"-- Build files have been written to: /workspace/zhanghui/DeepSpeech-2.x/docs/topic/ctc/warp-ctc/build\n"
]
}
],
"source": [
"!cmake .."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7a4238f1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 11%] \u001b[32m\u001b[1mLinking CXX shared library libwarpctc.so\u001b[0m\n",
"[ 33%] Built target warpctc\n",
"[ 44%] \u001b[32m\u001b[1mLinking CXX executable test_cpu\u001b[0m\n",
"[ 55%] \u001b[32m\u001b[1mLinking CXX executable test_gpu\u001b[0m\n",
"[ 77%] Built target test_cpu\n",
"[100%] Built target test_gpu\n"
]
}
],
"source": [
"!make -j"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "31761a31",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/workspace/zhanghui/DeepSpeech-2.x/docs/topic/ctc/warp-ctc\n"
]
}
],
"source": [
"cd .."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "f53316f6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/workspace/zhanghui/DeepSpeech-2.x/docs/topic/ctc/warp-ctc/pytorch_binding\n"
]
}
],
"source": [
"cd pytorch_binding"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "084f1e49",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"running install\n",
"running bdist_egg\n",
"running egg_info\n",
"writing warpctc_pytorch.egg-info/PKG-INFO\n",
"writing dependency_links to warpctc_pytorch.egg-info/dependency_links.txt\n",
"writing top-level names to warpctc_pytorch.egg-info/top_level.txt\n",
"writing manifest file 'warpctc_pytorch.egg-info/SOURCES.txt'\n",
"installing library code to build/bdist.linux-x86_64/egg\n",
"running install_lib\n",
"running build_py\n",
"running build_ext\n",
"building 'warpctc_pytorch._warp_ctc' extension\n",
"Emitting ninja build file /workspace/zhanghui/DeepSpeech-2.x/docs/topic/ctc/warp-ctc/pytorch_binding/build/temp.linux-x86_64-3.9/build.ninja...\n",
"Compiling objects...\n",
"Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)\n",
"ninja: no work to do.\n",
"g++ -pthread -B /workspace/zhanghui/DeepSpeech-2.x/tools/venv/compiler_compat -Wl,--sysroot=/ -shared -Wl,-rpath,/workspace/zhanghui/DeepSpeech-2.x/tools/venv/lib -Wl,-rpath-link,/workspace/zhanghui/DeepSpeech-2.x/tools/venv/lib -L/workspace/zhanghui/DeepSpeech-2.x/tools/venv/lib -Wl,-rpath,/workspace/zhanghui/DeepSpeech-2.x/tools/venv/lib -Wl,-rpath-link,/workspace/zhanghui/DeepSpeech-2.x/tools/venv/lib -L/workspace/zhanghui/DeepSpeech-2.x/tools/venv/lib /workspace/zhanghui/DeepSpeech-2.x/docs/topic/ctc/warp-ctc/pytorch_binding/build/temp.linux-x86_64-3.9/src/binding.o -L/workspace/zhanghui/DeepSpeech-2.x/docs/topic/ctc/warp-ctc/build -L/workspace/zhanghui/DeepSpeech-2.x/tools/venv/lib/python3.9/site-packages/torch/lib -L/usr/local/cuda/lib64 -lwarpctc -lc10 -ltorch -ltorch_cpu -ltorch_python -lcudart -lc10_cuda -ltorch_cuda -o build/lib.linux-x86_64-3.9/warpctc_pytorch/_warp_ctc.cpython-39-x86_64-linux-gnu.so -Wl,-rpath,/workspace/zhanghui/DeepSpeech-2.x/docs/topic/ctc/warp-ctc/build\n",
"creating build/bdist.linux-x86_64/egg\n",
"creating build/bdist.linux-x86_64/egg/warpctc_pytorch\n",
"copying build/lib.linux-x86_64-3.9/warpctc_pytorch/__init__.py -> build/bdist.linux-x86_64/egg/warpctc_pytorch\n",
"copying build/lib.linux-x86_64-3.9/warpctc_pytorch/_warp_ctc.cpython-39-x86_64-linux-gnu.so -> build/bdist.linux-x86_64/egg/warpctc_pytorch\n",
"byte-compiling build/bdist.linux-x86_64/egg/warpctc_pytorch/__init__.py to __init__.cpython-39.pyc\n",
"creating stub loader for warpctc_pytorch/_warp_ctc.cpython-39-x86_64-linux-gnu.so\n",
"byte-compiling build/bdist.linux-x86_64/egg/warpctc_pytorch/_warp_ctc.py to _warp_ctc.cpython-39.pyc\n",
"creating build/bdist.linux-x86_64/egg/EGG-INFO\n",
"copying warpctc_pytorch.egg-info/PKG-INFO -> build/bdist.linux-x86_64/egg/EGG-INFO\n",
"copying warpctc_pytorch.egg-info/SOURCES.txt -> build/bdist.linux-x86_64/egg/EGG-INFO\n",
"copying warpctc_pytorch.egg-info/dependency_links.txt -> build/bdist.linux-x86_64/egg/EGG-INFO\n",
"copying warpctc_pytorch.egg-info/top_level.txt -> build/bdist.linux-x86_64/egg/EGG-INFO\n",
"writing build/bdist.linux-x86_64/egg/EGG-INFO/native_libs.txt\n",
"zip_safe flag not set; analyzing archive contents...\n",
"warpctc_pytorch.__pycache__._warp_ctc.cpython-39: module references __file__\n",
"creating 'dist/warpctc_pytorch-0.1-py3.9-linux-x86_64.egg' and adding 'build/bdist.linux-x86_64/egg' to it\n",
"removing 'build/bdist.linux-x86_64/egg' (and everything under it)\n",
"Processing warpctc_pytorch-0.1-py3.9-linux-x86_64.egg\n",
"removing '/workspace/zhanghui/DeepSpeech-2.x/tools/venv/lib/python3.9/site-packages/warpctc_pytorch-0.1-py3.9-linux-x86_64.egg' (and everything under it)\n",
"creating /workspace/zhanghui/DeepSpeech-2.x/tools/venv/lib/python3.9/site-packages/warpctc_pytorch-0.1-py3.9-linux-x86_64.egg\n",
"Extracting warpctc_pytorch-0.1-py3.9-linux-x86_64.egg to /workspace/zhanghui/DeepSpeech-2.x/tools/venv/lib/python3.9/site-packages\n",
"warpctc-pytorch 0.1 is already the active version in easy-install.pth\n",
"\n",
"Installed /workspace/zhanghui/DeepSpeech-2.x/tools/venv/lib/python3.9/site-packages/warpctc_pytorch-0.1-py3.9-linux-x86_64.egg\n",
"Processing dependencies for warpctc-pytorch==0.1\n",
"Finished processing dependencies for warpctc-pytorch==0.1\n"
]
}
],
"source": [
"!python setup.py install"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "ee4ca9e3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Python 3.9.5\r\n"
]
}
],
"source": [
"!python -V"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "59255ed8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/workspace/zhanghui/DeepSpeech-2.x/docs/topic/ctc/warp-ctc\n"
]
}
],
"source": [
"cd .."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "1dae09b9",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"import warpctc_pytorch as wp\n",
"import paddle.nn as pn\n",
"import paddle"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "83d0762e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'1.10.0+cu102'"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"torch.__version__"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "62501e2c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'2.2.1'"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"paddle.__version__"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "9e8e0f40",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([2, 1, 5])\n",
"2.4628584384918213\n",
"[[[ 0.17703122 -0.70812464 0.17703122 0.17703122 0.17703122]]\n",
"\n",
" [[ 0.17703122 0.17703122 -0.70812464 0.17703122 0.17703122]]]\n"
]
}
],
"source": [
"# warpctc_pytorch CTCLoss\n",
"probs = torch.FloatTensor([[\n",
" [0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1]\n",
" ]]).transpose(0, 1).contiguous()\n",
"print(probs.size())\n",
"labels = torch.IntTensor([1, 2])\n",
"label_sizes = torch.IntTensor([2])\n",
"probs_sizes = torch.IntTensor([2])\n",
"probs.requires_grad_(True)\n",
"bs = probs.size(1)\n",
"\n",
"ctc_loss = wp.CTCLoss(size_average=False, length_average=False)\n",
"cost = ctc_loss(probs, labels, probs_sizes, label_sizes)\n",
"cost = cost.sum() / bs\n",
"print(cost.item())\n",
"cost.backward()\n",
"print(probs.grad.numpy())"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "2cd46569",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.4628584384918213\n",
"[[[ 0.1770312 -0.7081248 0.1770312 0.1770312 0.1770312]]\n",
"\n",
" [[ 0.1770312 0.1770312 -0.7081248 0.1770312 0.1770312]]]\n"
]
}
],
"source": [
"# pytorch CTCLoss\n",
"probs = torch.FloatTensor([[\n",
" [0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1]\n",
" ]]).transpose(0, 1).contiguous()\n",
"labels = torch.IntTensor([1, 2])\n",
"label_sizes = torch.IntTensor([2])\n",
"probs_sizes = torch.IntTensor([2])\n",
"probs.requires_grad_(True)\n",
"bs = probs.size(1)\n",
"\n",
"log_probs = torch.log_softmax(probs, axis=-1)\n",
"\n",
"ctc_loss1 = nn.CTCLoss(reduction='none')\n",
"cost = ctc_loss1(log_probs, labels, probs_sizes, label_sizes)\n",
"cost = cost.sum() / bs\n",
"print(cost.item())\n",
"cost.backward()\n",
"print(probs.grad.numpy())"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "85c3461a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[2, 1, 5]\n",
"[1, 2]\n",
"2.4628584384918213\n",
"[[[ 0.17703122 -0.70812464 0.17703122 0.17703122 0.17703122]]\n",
"\n",
" [[ 0.17703122 0.17703122 -0.70812464 0.17703122 0.17703122]]]\n"
]
}
],
"source": [
"# Paddle CTCLoss\n",
"paddle.set_device('cpu')\n",
"probs = paddle.to_tensor([[\n",
" [0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1],\n",
" ]]).transpose([1,0,2])\n",
"print(probs.shape) # (T, B, D)\n",
"labels = paddle.to_tensor([[1, 2]], dtype='int32') #BL)\n",
"print(labels.shape)\n",
"label_sizes = paddle.to_tensor([2], dtype='int64')\n",
"probs_sizes = paddle.to_tensor([2], dtype='int64')\n",
"bs = paddle.shape(probs)[1]\n",
"probs.stop_gradient=False\n",
"\n",
"ctc_loss = pn.CTCLoss(reduction='none')\n",
"cost = ctc_loss(probs, labels, probs_sizes, label_sizes)\n",
"cost = cost.sum() / bs\n",
"print(cost.item())\n",
"cost.backward()\n",
"print(probs.grad.numpy())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8cdf76c2",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 26,
"id": "2c305eaf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([2, 1, 5])\n",
"2.4628584384918213\n",
"[[[ 0.17703117 -0.7081247 0.17703117 0.17703117 0.17703117]]\n",
"\n",
" [[ 0.17703117 0.17703117 -0.7081247 0.17703117 0.17703117]]]\n"
]
}
],
"source": [
"# warpctc_pytorch CTCLoss, log_softmax idempotent\n",
"probs = torch.FloatTensor([[\n",
" [0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1]\n",
" ]]).transpose(0, 1).contiguous()\n",
"print(probs.size())\n",
"labels = torch.IntTensor([1, 2])\n",
"label_sizes = torch.IntTensor([2])\n",
"probs_sizes = torch.IntTensor([2])\n",
"probs.requires_grad_(True)\n",
"bs = probs.size(1)\n",
"\n",
"ctc_loss = wp.CTCLoss(size_average=False, length_average=False)\n",
"\n",
"log_probs = torch.log_softmax(probs, axis=-1)\n",
"cost = ctc_loss(log_probs, labels, probs_sizes, label_sizes)\n",
"cost = cost.sum() / bs\n",
"print(cost.item())\n",
"cost.backward()\n",
"print(probs.grad.numpy())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "443336f0",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}