|
|
|
|
import argparse
|
|
|
|
|
import base64
|
|
|
|
|
import datetime
|
|
|
|
|
import json
|
|
|
|
|
import os
|
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
|
|
import aiofiles
|
|
|
|
|
import librosa
|
|
|
|
|
import soundfile as sf
|
|
|
|
|
import uvicorn
|
|
|
|
|
from fastapi import FastAPI
|
|
|
|
|
from fastapi import File
|
|
|
|
|
from fastapi import Form
|
|
|
|
|
from fastapi import UploadFile
|
|
|
|
|
from fastapi import WebSocket
|
|
|
|
|
from fastapi import WebSocketDisconnect
|
|
|
|
|
from fastapi.responses import StreamingResponse
|
|
|
|
|
from pydantic import BaseModel
|
|
|
|
|
from src.AudioManeger import AudioMannger
|
|
|
|
|
from src.robot import Robot
|
|
|
|
|
from src.SpeechBase.vpr import VPR
|
|
|
|
|
from src.util import *
|
|
|
|
|
from src.WebsocketManeger import ConnectionManager
|
|
|
|
|
from starlette.middleware.cors import CORSMiddleware
|
|
|
|
|
from starlette.requests import Request
|
|
|
|
|
from starlette.responses import FileResponse
|
|
|
|
|
from starlette.websockets import WebSocketState as WebSocketState
|
|
|
|
|
|
|
|
|
|
from paddlespeech.cli.tts.infer import TTSExecutor
|
|
|
|
|
from paddlespeech.server.engine.asr.online.python.asr_engine import PaddleASRConnectionHanddler
|
|
|
|
|
from paddlespeech.server.utils.audio_process import float2pcm
|
|
|
|
|
|
|
|
|
|
# 解析配置
|
|
|
|
|
parser = argparse.ArgumentParser(prog='PaddleSpeechDemo', add_help=True)
|
|
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--port",
|
|
|
|
|
action="store",
|
|
|
|
|
type=int,
|
|
|
|
|
help="port of the app",
|
|
|
|
|
default=8010,
|
|
|
|
|
required=False)
|
|
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
port = args.port
|
|
|
|
|
|
|
|
|
|
# 配置文件
|
|
|
|
|
tts_config = "conf/tts_online_application.yaml"
|
|
|
|
|
asr_config = "conf/ws_conformer_wenetspeech_application_faster.yaml"
|
|
|
|
|
asr_init_path = "source/demo/demo.wav"
|
|
|
|
|
db_path = "source/db/vpr.sqlite"
|
|
|
|
|
ie_model_path = "source/model"
|
|
|
|
|
tts_model = TTSExecutor()
|
|
|
|
|
# 路径配置
|
|
|
|
|
UPLOAD_PATH = "source/vpr"
|
|
|
|
|
WAV_PATH = "source/wav"
|
|
|
|
|
|
|
|
|
|
base_sources = [UPLOAD_PATH, WAV_PATH]
|
|
|
|
|
for path in base_sources:
|
|
|
|
|
os.makedirs(path, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
# 初始化
|
|
|
|
|
app = FastAPI()
|
|
|
|
|
chatbot = Robot(
|
|
|
|
|
asr_config, tts_config, asr_init_path, ie_model_path=ie_model_path)
|
|
|
|
|
manager = ConnectionManager()
|
|
|
|
|
aumanager = AudioMannger(chatbot)
|
|
|
|
|
aumanager.init()
|
|
|
|
|
vpr = VPR(db_path, dim=192, top_k=5)
|
|
|
|
|
# 初始化下载模型
|
|
|
|
|
tts_model(
|
|
|
|
|
text="今天天气准不错",
|
|
|
|
|
output="test.wav",
|
|
|
|
|
am='fastspeech2_mix',
|
|
|
|
|
spk_id=174,
|
|
|
|
|
voc='hifigan_csmsc',
|
|
|
|
|
lang='mix', )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 服务配置
|
|
|
|
|
class NlpBase(BaseModel):
|
|
|
|
|
chat: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TtsBase(BaseModel):
|
|
|
|
|
text: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Audios:
|
|
|
|
|
def __init__(self) -> None:
|
|
|
|
|
self.audios = b""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
audios = Audios()
|
|
|
|
|
|
|
|
|
|
######################################################################
|
|
|
|
|
########################### ASR 服务 #################################
|
|
|
|
|
#####################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 接收文件,返回ASR结果
|
|
|
|
|
# 上传文件
|
|
|
|
|
@app.post("/asr/offline")
|
|
|
|
|
async def speech2textOffline(files: List[UploadFile]):
|
|
|
|
|
# 只有第一个有效
|
|
|
|
|
asr_res = ""
|
|
|
|
|
for file in files[:1]:
|
|
|
|
|
# 生成时间戳
|
|
|
|
|
now_name = "asr_offline_" + datetime.datetime.strftime(
|
|
|
|
|
datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
|
|
|
|
|
out_file_path = os.path.join(WAV_PATH, now_name)
|
|
|
|
|
async with aiofiles.open(out_file_path, 'wb') as out_file:
|
|
|
|
|
content = await file.read() # async read
|
|
|
|
|
await out_file.write(content) # async write
|
|
|
|
|
|
|
|
|
|
# 返回ASR识别结果
|
|
|
|
|
asr_res = chatbot.speech2text(out_file_path)
|
|
|
|
|
return SuccessRequest(result=asr_res)
|
|
|
|
|
return ErrorRequest(message="上传文件为空")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 接收文件,同时将wav强制转成16k, int16类型
|
|
|
|
|
@app.post("/asr/offlinefile")
|
|
|
|
|
async def speech2textOfflineFile(files: List[UploadFile]):
|
|
|
|
|
# 只有第一个有效
|
|
|
|
|
asr_res = ""
|
|
|
|
|
for file in files[:1]:
|
|
|
|
|
# 生成时间戳
|
|
|
|
|
now_name = "asr_offline_" + datetime.datetime.strftime(
|
|
|
|
|
datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
|
|
|
|
|
out_file_path = os.path.join(WAV_PATH, now_name)
|
|
|
|
|
async with aiofiles.open(out_file_path, 'wb') as out_file:
|
|
|
|
|
content = await file.read() # async read
|
|
|
|
|
await out_file.write(content) # async write
|
|
|
|
|
|
|
|
|
|
# 将文件转成16k, 16bit类型的wav文件
|
|
|
|
|
wav, sr = librosa.load(out_file_path, sr=16000)
|
|
|
|
|
wav = float2pcm(wav) # float32 to int16
|
|
|
|
|
wav_bytes = wav.tobytes() # to bytes
|
|
|
|
|
wav_base64 = base64.b64encode(wav_bytes).decode('utf8')
|
|
|
|
|
|
|
|
|
|
# 将文件重新写入
|
|
|
|
|
now_name = now_name[:-4] + "_16k" + ".wav"
|
|
|
|
|
out_file_path = os.path.join(WAV_PATH, now_name)
|
|
|
|
|
sf.write(out_file_path, wav, 16000)
|
|
|
|
|
|
|
|
|
|
# 返回ASR识别结果
|
|
|
|
|
asr_res = chatbot.speech2text(out_file_path)
|
|
|
|
|
response_res = {"asr_result": asr_res, "wav_base64": wav_base64}
|
|
|
|
|
return SuccessRequest(result=response_res)
|
|
|
|
|
|
|
|
|
|
return ErrorRequest(message="上传文件为空")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 流式接收测试
|
|
|
|
|
@app.post("/asr/online1")
|
|
|
|
|
async def speech2textOnlineRecive(files: List[UploadFile]):
|
|
|
|
|
audio_bin = b''
|
|
|
|
|
for file in files:
|
|
|
|
|
content = await file.read()
|
|
|
|
|
audio_bin += content
|
|
|
|
|
audios.audios += audio_bin
|
|
|
|
|
print(f"audios长度变化: {len(audios.audios)}")
|
|
|
|
|
return SuccessRequest(message="接收成功")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 采集环境噪音大小
|
|
|
|
|
@app.post("/asr/collectEnv")
|
|
|
|
|
async def collectEnv(files: List[UploadFile]):
|
|
|
|
|
for file in files[:1]:
|
|
|
|
|
content = await file.read() # async read
|
|
|
|
|
# 初始化, wav 前44字节是头部信息
|
|
|
|
|
aumanager.compute_env_volume(content[44:])
|
|
|
|
|
vad_ = aumanager.vad_threshold
|
|
|
|
|
return SuccessRequest(result=vad_, message="采集环境噪音成功")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 停止录音
|
|
|
|
|
@app.get("/asr/stopRecord")
|
|
|
|
|
async def stopRecord():
|
|
|
|
|
audios.audios = b""
|
|
|
|
|
aumanager.stop()
|
|
|
|
|
print("Online录音暂停")
|
|
|
|
|
return SuccessRequest(message="停止成功")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 恢复录音
|
|
|
|
|
@app.get("/asr/resumeRecord")
|
|
|
|
|
async def resumeRecord():
|
|
|
|
|
aumanager.resume()
|
|
|
|
|
print("Online录音恢复")
|
|
|
|
|
return SuccessRequest(message="Online录音恢复")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 聊天用的 ASR
|
|
|
|
|
@app.websocket("/ws/asr/offlineStream")
|
|
|
|
|
async def websocket_endpoint(websocket: WebSocket):
|
|
|
|
|
await manager.connect(websocket)
|
|
|
|
|
try:
|
|
|
|
|
while True:
|
|
|
|
|
asr_res = None
|
|
|
|
|
# websocket 不接收,只推送
|
|
|
|
|
data = await websocket.receive_bytes()
|
|
|
|
|
if not aumanager.is_pause:
|
|
|
|
|
asr_res = aumanager.stream_asr(data)
|
|
|
|
|
else:
|
|
|
|
|
print("录音暂停")
|
|
|
|
|
if asr_res:
|
|
|
|
|
await manager.send_personal_message(asr_res, websocket)
|
|
|
|
|
aumanager.clear_asr()
|
|
|
|
|
|
|
|
|
|
except WebSocketDisconnect:
|
|
|
|
|
manager.disconnect(websocket)
|
|
|
|
|
# await manager.broadcast(f"用户-{user}-离开")
|
|
|
|
|
# print(f"用户-{user}-离开")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 流式识别的 ASR
|
|
|
|
|
@app.websocket('/ws/asr/onlineStream')
|
|
|
|
|
async def websocket_endpoint_online(websocket: WebSocket):
|
|
|
|
|
"""PaddleSpeech Online ASR Server api
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
websocket (WebSocket): the websocket instance
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
#1. the interface wait to accept the websocket protocal header
|
|
|
|
|
# and only we receive the header, it establish the connection with specific thread
|
|
|
|
|
await websocket.accept()
|
|
|
|
|
|
|
|
|
|
#2. if we accept the websocket headers, we will get the online asr engine instance
|
|
|
|
|
engine = chatbot.asr.engine
|
|
|
|
|
|
|
|
|
|
#3. each websocket connection, we will create an PaddleASRConnectionHanddler to process such audio
|
|
|
|
|
# and each connection has its own connection instance to process the request
|
|
|
|
|
# and only if client send the start signal, we create the PaddleASRConnectionHanddler instance
|
|
|
|
|
connection_handler = None
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
#4. we do a loop to process the audio package by package according the protocal
|
|
|
|
|
# and only if the client send finished signal, we will break the loop
|
|
|
|
|
while True:
|
|
|
|
|
# careful here, changed the source code from starlette.websockets
|
|
|
|
|
# 4.1 we wait for the client signal for the specific action
|
|
|
|
|
assert websocket.application_state == WebSocketState.CONNECTED
|
|
|
|
|
message = await websocket.receive()
|
|
|
|
|
websocket._raise_on_disconnect(message)
|
|
|
|
|
|
|
|
|
|
#4.2 text for the action command and bytes for pcm data
|
|
|
|
|
if "text" in message:
|
|
|
|
|
# we first parse the specific command
|
|
|
|
|
message = json.loads(message["text"])
|
|
|
|
|
if 'signal' not in message:
|
|
|
|
|
resp = {"status": "ok", "message": "no valid json data"}
|
|
|
|
|
await websocket.send_json(resp)
|
|
|
|
|
|
|
|
|
|
# start command, we create the PaddleASRConnectionHanddler instance to process the audio data
|
|
|
|
|
# end command, we process the all the last audio pcm and return the final result
|
|
|
|
|
# and we break the loop
|
|
|
|
|
if message['signal'] == 'start':
|
|
|
|
|
resp = {"status": "ok", "signal": "server_ready"}
|
|
|
|
|
# do something at begining here
|
|
|
|
|
# create the instance to process the audio
|
|
|
|
|
# connection_handler = chatbot.asr.connection_handler
|
|
|
|
|
connection_handler = PaddleASRConnectionHanddler(engine)
|
|
|
|
|
await websocket.send_json(resp)
|
|
|
|
|
elif message['signal'] == 'end':
|
|
|
|
|
# reset single engine for an new connection
|
|
|
|
|
# and we will destroy the connection
|
|
|
|
|
connection_handler.decode(is_finished=True)
|
|
|
|
|
connection_handler.rescoring()
|
|
|
|
|
asr_results = connection_handler.get_result()
|
|
|
|
|
connection_handler.reset()
|
|
|
|
|
|
|
|
|
|
resp = {
|
|
|
|
|
"status": "ok",
|
|
|
|
|
"signal": "finished",
|
|
|
|
|
'result': asr_results
|
|
|
|
|
}
|
|
|
|
|
await websocket.send_json(resp)
|
|
|
|
|
break
|
|
|
|
|
else:
|
|
|
|
|
resp = {"status": "ok", "message": "no valid json data"}
|
|
|
|
|
await websocket.send_json(resp)
|
|
|
|
|
elif "bytes" in message:
|
|
|
|
|
# bytes for the pcm data
|
|
|
|
|
message = message["bytes"]
|
|
|
|
|
print("###############")
|
|
|
|
|
print("len message: ", len(message))
|
|
|
|
|
print("###############")
|
|
|
|
|
|
|
|
|
|
# we extract the remained audio pcm
|
|
|
|
|
# and decode for the result in this package data
|
|
|
|
|
connection_handler.extract_feat(message)
|
|
|
|
|
connection_handler.decode(is_finished=False)
|
|
|
|
|
asr_results = connection_handler.get_result()
|
|
|
|
|
|
|
|
|
|
# return the current period result
|
|
|
|
|
# if the engine create the vad instance, this connection will have many period results
|
|
|
|
|
resp = {'result': asr_results}
|
|
|
|
|
print(resp)
|
|
|
|
|
await websocket.send_json(resp)
|
|
|
|
|
except WebSocketDisconnect:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
######################################################################
|
|
|
|
|
########################### NLP 服务 #################################
|
|
|
|
|
#####################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.post("/nlp/chat")
|
|
|
|
|
async def chatOffline(nlp_base: NlpBase):
|
|
|
|
|
chat = nlp_base.chat
|
|
|
|
|
if not chat:
|
|
|
|
|
return ErrorRequest(message="传入文本为空")
|
|
|
|
|
else:
|
|
|
|
|
res = chatbot.chat(chat)
|
|
|
|
|
return SuccessRequest(result=res)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.post("/nlp/ie")
|
|
|
|
|
async def ieOffline(nlp_base: NlpBase):
|
|
|
|
|
nlp_text = nlp_base.chat
|
|
|
|
|
if not nlp_text:
|
|
|
|
|
return ErrorRequest(message="传入文本为空")
|
|
|
|
|
else:
|
|
|
|
|
res = chatbot.ie(nlp_text)
|
|
|
|
|
return SuccessRequest(result=res)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
######################################################################
|
|
|
|
|
########################### TTS 服务 #################################
|
|
|
|
|
#####################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 端到端合成
|
|
|
|
|
@app.post("/tts/offline")
|
|
|
|
|
async def text2speechOffline(tts_base: TtsBase):
|
|
|
|
|
text = tts_base.text
|
|
|
|
|
if not text:
|
|
|
|
|
return ErrorRequest(message="文本为空")
|
|
|
|
|
else:
|
|
|
|
|
now_name = "tts_" + datetime.datetime.strftime(
|
|
|
|
|
datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
|
|
|
|
|
out_file_path = os.path.join(WAV_PATH, now_name)
|
|
|
|
|
# 保存为文件,再转成base64传输
|
|
|
|
|
# chatbot.text2speech(text, outpath=out_file_path)
|
|
|
|
|
# 使用中英混合CLI
|
|
|
|
|
tts_model(
|
|
|
|
|
text=text,
|
|
|
|
|
output=out_file_path,
|
|
|
|
|
am='fastspeech2_mix',
|
|
|
|
|
spk_id=174,
|
|
|
|
|
voc='hifigan_csmsc',
|
|
|
|
|
lang='mix')
|
|
|
|
|
with open(out_file_path, "rb") as f:
|
|
|
|
|
data_bin = f.read()
|
|
|
|
|
base_str = base64.b64encode(data_bin)
|
|
|
|
|
return SuccessRequest(result=base_str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# http流式TTS
|
|
|
|
|
@app.post("/tts/online")
|
|
|
|
|
async def stream_tts(request_body: TtsBase):
|
|
|
|
|
text = request_body.text
|
|
|
|
|
return StreamingResponse(chatbot.text2speechStreamBytes(text=text))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ws流式TTS
|
|
|
|
|
@app.websocket("/ws/tts/online")
|
|
|
|
|
async def stream_ttsWS(websocket: WebSocket):
|
|
|
|
|
await manager.connect(websocket)
|
|
|
|
|
try:
|
|
|
|
|
while True:
|
|
|
|
|
text = await websocket.receive_text()
|
|
|
|
|
# 用 websocket 流式接收音频数据
|
|
|
|
|
if text:
|
|
|
|
|
for sub_wav in chatbot.text2speechStream(text=text):
|
|
|
|
|
# print("发送sub wav: ", len(sub_wav))
|
|
|
|
|
res = {"wav": sub_wav, "done": False}
|
|
|
|
|
await websocket.send_json(res)
|
|
|
|
|
|
|
|
|
|
# 输送结束
|
|
|
|
|
res = {"wav": sub_wav, "done": True}
|
|
|
|
|
await websocket.send_json(res)
|
|
|
|
|
# manager.disconnect(websocket)
|
|
|
|
|
|
|
|
|
|
except WebSocketDisconnect:
|
|
|
|
|
manager.disconnect(websocket)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
######################################################################
|
|
|
|
|
########################### VPR 服务 #################################
|
|
|
|
|
#####################################################################
|
|
|
|
|
|
|
|
|
|
app.add_middleware(
|
|
|
|
|
CORSMiddleware,
|
|
|
|
|
allow_origins=["*"],
|
|
|
|
|
allow_credentials=True,
|
|
|
|
|
allow_methods=["*"],
|
|
|
|
|
allow_headers=["*"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.post('/vpr/enroll')
|
|
|
|
|
async def vpr_enroll(table_name: str=None,
|
|
|
|
|
spk_id: str=Form(...),
|
|
|
|
|
audio: UploadFile=File(...)):
|
|
|
|
|
# Enroll the uploaded audio with spk-id into MySQL
|
|
|
|
|
try:
|
|
|
|
|
if not spk_id:
|
|
|
|
|
return {'status': False, 'msg': "spk_id can not be None"}
|
|
|
|
|
# Save the upload data to server.
|
|
|
|
|
content = await audio.read()
|
|
|
|
|
now_name = "vpr_enroll_" + datetime.datetime.strftime(
|
|
|
|
|
datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
|
|
|
|
|
audio_path = os.path.join(UPLOAD_PATH, now_name)
|
|
|
|
|
|
|
|
|
|
with open(audio_path, "wb+") as f:
|
|
|
|
|
f.write(content)
|
|
|
|
|
vpr.vpr_enroll(username=spk_id, wav_path=audio_path)
|
|
|
|
|
return {'status': True, 'msg': "Successfully enroll data!"}
|
|
|
|
|
except Exception as e:
|
|
|
|
|
return {'status': False, 'msg': e}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.post('/vpr/recog')
|
|
|
|
|
async def vpr_recog(request: Request,
|
|
|
|
|
table_name: str=None,
|
|
|
|
|
audio: UploadFile=File(...)):
|
|
|
|
|
# Voice print recognition online
|
|
|
|
|
# try:
|
|
|
|
|
# Save the upload data to server.
|
|
|
|
|
content = await audio.read()
|
|
|
|
|
now_name = "vpr_query_" + datetime.datetime.strftime(
|
|
|
|
|
datetime.datetime.now(), '%Y%m%d%H%M%S') + randName() + ".wav"
|
|
|
|
|
query_audio_path = os.path.join(UPLOAD_PATH, now_name)
|
|
|
|
|
with open(query_audio_path, "wb+") as f:
|
|
|
|
|
f.write(content)
|
|
|
|
|
spk_ids, paths, scores = vpr.do_search_vpr(query_audio_path)
|
|
|
|
|
|
|
|
|
|
res = dict(zip(spk_ids, zip(paths, scores)))
|
|
|
|
|
# Sort results by distance metric, closest distances first
|
|
|
|
|
res = sorted(res.items(), key=lambda item: item[1][1], reverse=True)
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.post('/vpr/del')
|
|
|
|
|
async def vpr_del(spk_id: dict=None):
|
|
|
|
|
# Delete a record by spk_id in MySQL
|
|
|
|
|
try:
|
|
|
|
|
spk_id = spk_id['spk_id']
|
|
|
|
|
if not spk_id:
|
|
|
|
|
return {'status': False, 'msg': "spk_id can not be None"}
|
|
|
|
|
vpr.vpr_del(username=spk_id)
|
|
|
|
|
return {'status': True, 'msg': "Successfully delete data!"}
|
|
|
|
|
except Exception as e:
|
|
|
|
|
return {'status': False, 'msg': e}, 400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.get('/vpr/list')
|
|
|
|
|
async def vpr_list():
|
|
|
|
|
# Get all records in MySQL
|
|
|
|
|
try:
|
|
|
|
|
spk_ids, vpr_ids = vpr.do_list()
|
|
|
|
|
return spk_ids, vpr_ids
|
|
|
|
|
except Exception as e:
|
|
|
|
|
return {'status': False, 'msg': e}, 400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.get('/vpr/database64')
|
|
|
|
|
async def vpr_database64(vprId: int):
|
|
|
|
|
# Get the audio file from path by spk_id in MySQL
|
|
|
|
|
try:
|
|
|
|
|
if not vprId:
|
|
|
|
|
return {'status': False, 'msg': "vpr_id can not be None"}
|
|
|
|
|
audio_path = vpr.do_get_wav(vprId)
|
|
|
|
|
# 返回base64
|
|
|
|
|
|
|
|
|
|
# 将文件转成16k, 16bit类型的wav文件
|
|
|
|
|
wav, sr = librosa.load(audio_path, sr=16000)
|
|
|
|
|
wav = float2pcm(wav) # float32 to int16
|
|
|
|
|
wav_bytes = wav.tobytes() # to bytes
|
|
|
|
|
wav_base64 = base64.b64encode(wav_bytes).decode('utf8')
|
|
|
|
|
|
|
|
|
|
return SuccessRequest(result=wav_base64)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
return {'status': False, 'msg': e}, 400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.get('/vpr/data')
|
|
|
|
|
async def vpr_data(vprId: int):
|
|
|
|
|
# Get the audio file from path by spk_id in MySQL
|
|
|
|
|
try:
|
|
|
|
|
if not vprId:
|
|
|
|
|
return {'status': False, 'msg': "vpr_id can not be None"}
|
|
|
|
|
audio_path = vpr.do_get_wav(vprId)
|
|
|
|
|
return FileResponse(audio_path)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
return {'status': False, 'msg': e}, 400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
uvicorn.run(app=app, host='0.0.0.0', port=port)
|