You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
179 lines
5.3 KiB
179 lines
5.3 KiB
3 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import argparse
|
||
|
from pathlib import Path
|
||
|
|
||
|
import numpy as np
|
||
|
import onnxruntime as ort
|
||
|
import soundfile as sf
|
||
|
from timer import timer
|
||
|
|
||
|
from paddlespeech.t2s.exps.syn_utils import get_frontend
|
||
|
from paddlespeech.t2s.exps.syn_utils import get_sentences
|
||
|
from paddlespeech.t2s.utils import str2bool
|
||
|
|
||
|
|
||
|
def get_sess(args, filed='am'):
|
||
|
full_name = ''
|
||
|
if filed == 'am':
|
||
|
full_name = args.am
|
||
|
elif filed == 'voc':
|
||
|
full_name = args.voc
|
||
|
model_dir = str(Path(args.inference_dir) / (full_name + ".onnx"))
|
||
|
sess_options = ort.SessionOptions()
|
||
|
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||
|
sess_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
|
||
|
|
||
|
if args.device == "gpu":
|
||
|
# fastspeech2 can't use trt now!
|
||
|
if args.use_trt:
|
||
|
providers = ['TensorrtExecutionProvider']
|
||
|
else:
|
||
|
providers = ['CUDAExecutionProvider']
|
||
|
elif args.device == "cpu":
|
||
|
providers = ['CPUExecutionProvider']
|
||
|
sess_options.intra_op_num_threads = args.cpu_threads
|
||
|
sess = ort.InferenceSession(
|
||
|
model_dir, providers=providers, sess_options=sess_options)
|
||
|
return sess
|
||
|
|
||
|
|
||
|
def ort_predict(args):
|
||
|
|
||
|
# frontend
|
||
|
frontend = get_frontend(args)
|
||
|
|
||
|
output_dir = Path(args.output_dir)
|
||
|
output_dir.mkdir(parents=True, exist_ok=True)
|
||
|
sentences = get_sentences(args)
|
||
|
|
||
|
am_name = args.am[:args.am.rindex('_')]
|
||
|
am_dataset = args.am[args.am.rindex('_') + 1:]
|
||
|
fs = 24000 if am_dataset != 'ljspeech' else 22050
|
||
|
|
||
|
# am
|
||
|
am_sess = get_sess(args, filed='am')
|
||
|
|
||
|
# vocoder
|
||
|
voc_sess = get_sess(args, filed='voc')
|
||
|
|
||
|
# am warmup
|
||
|
for batch in [27, 38, 54]:
|
||
|
data = np.random.randint(1, 266, size=(batch, ))
|
||
|
am_sess.run(None, {"text": data})
|
||
|
|
||
|
# voc warmup
|
||
|
for batch in [227, 308, 544]:
|
||
|
data = np.random.rand(batch, 80).astype("float32")
|
||
|
voc_sess.run(None, {"logmel": data})
|
||
|
print("warm up done!")
|
||
|
|
||
|
N = 0
|
||
|
T = 0
|
||
|
merge_sentences = True
|
||
|
for utt_id, sentence in sentences:
|
||
|
with timer() as t:
|
||
|
if args.lang == 'zh':
|
||
|
input_ids = frontend.get_input_ids(
|
||
|
sentence, merge_sentences=merge_sentences)
|
||
|
|
||
|
phone_ids = input_ids["phone_ids"]
|
||
|
else:
|
||
|
print("lang should in be 'zh' here!")
|
||
|
# merge_sentences=True here, so we only use the first item of phone_ids
|
||
|
phone_ids = phone_ids[0].numpy()
|
||
|
mel = am_sess.run(output_names=None, input_feed={'text': phone_ids})
|
||
|
mel = mel[0]
|
||
|
wav = voc_sess.run(output_names=None, input_feed={'logmel': mel})
|
||
|
|
||
|
N += len(wav[0])
|
||
|
T += t.elapse
|
||
|
speed = len(wav[0]) / t.elapse
|
||
|
rtf = fs / speed
|
||
|
sf.write(
|
||
|
str(output_dir / (utt_id + ".wav")),
|
||
|
np.array(wav)[0],
|
||
|
samplerate=fs)
|
||
|
print(
|
||
|
f"{utt_id}, mel: {mel.shape}, wave: {len(wav[0])}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
|
||
|
)
|
||
|
print(f"generation speed: {N / T}Hz, RTF: {fs / (N / T) }")
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
parser = argparse.ArgumentParser(description="Infernce with onnxruntime.")
|
||
|
# acoustic model
|
||
|
parser.add_argument(
|
||
|
'--am',
|
||
|
type=str,
|
||
|
default='fastspeech2_csmsc',
|
||
|
choices=[
|
||
|
'fastspeech2_csmsc',
|
||
|
],
|
||
|
help='Choose acoustic model type of tts task.')
|
||
|
parser.add_argument(
|
||
|
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
|
||
|
parser.add_argument(
|
||
|
"--tones_dict", type=str, default=None, help="tone vocabulary file.")
|
||
|
|
||
|
# voc
|
||
|
parser.add_argument(
|
||
|
'--voc',
|
||
|
type=str,
|
||
|
default='hifigan_csmsc',
|
||
|
choices=[
|
||
|
'hifigan_csmsc', 'mb_melgan_csmsc'
|
||
|
],
|
||
|
help='Choose vocoder type of tts task.')
|
||
|
# other
|
||
|
parser.add_argument(
|
||
|
"--inference_dir", type=str, help="dir to save inference models")
|
||
|
parser.add_argument(
|
||
|
"--text",
|
||
|
type=str,
|
||
|
help="text to synthesize, a 'utt_id sentence' pair per line")
|
||
|
parser.add_argument("--output_dir", type=str, help="output dir")
|
||
|
parser.add_argument(
|
||
|
'--lang',
|
||
|
type=str,
|
||
|
default='zh',
|
||
|
help='Choose model language. zh or en')
|
||
|
|
||
|
# inference
|
||
|
parser.add_argument(
|
||
|
"--use_trt",
|
||
|
type=str2bool,
|
||
|
default=False,
|
||
|
help="Whether to use inference engin TensorRT.", )
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--device",
|
||
|
default="gpu",
|
||
|
choices=["gpu", "cpu"],
|
||
|
help="Device selected for inference.", )
|
||
|
parser.add_argument('--cpu_threads', type=int, default=1)
|
||
|
|
||
|
args, _ = parser.parse_known_args()
|
||
|
return args
|
||
|
|
||
|
|
||
|
def main():
|
||
|
args = parse_args()
|
||
|
|
||
|
ort_predict(args)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|