You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
5.8 KiB
172 lines
5.8 KiB
4 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from paddle import nn
|
||
|
from paddle.nn import functional as F
|
||
|
|
||
3 years ago
|
from paddlespeech.s2t.modules.activation import brelu
|
||
|
from paddlespeech.s2t.modules.mask import make_non_pad_mask
|
||
|
from paddlespeech.s2t.utils.log import Log
|
||
4 years ago
|
|
||
|
logger = Log(__name__).getlog()
|
||
|
|
||
|
__all__ = ['ConvStack', "conv_output_size"]
|
||
|
|
||
|
|
||
|
def conv_output_size(I, F, P, S):
|
||
|
# https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks#hyperparameters
|
||
|
# Output size after Conv:
|
||
|
# By noting I the length of the input volume size,
|
||
|
# F the length of the filter,
|
||
|
# P the amount of zero padding,
|
||
|
# S the stride,
|
||
|
# then the output size O of the feature map along that dimension is given by:
|
||
|
# O = (I - F + Pstart + Pend) // S + 1
|
||
|
# When Pstart == Pend == P, we can replace Pstart + Pend by 2P.
|
||
|
# When Pstart == Pend == 0
|
||
|
# O = (I - F - S) // S
|
||
|
# https://iq.opengenus.org/output-size-of-convolution/
|
||
|
# Output height = (Input height + padding height top + padding height bottom - kernel height) / (stride height) + 1
|
||
|
# Output width = (Output width + padding width right + padding width left - kernel width) / (stride width) + 1
|
||
|
return (I - F + 2 * P - S) // S
|
||
|
|
||
|
|
||
3 years ago
|
# receptive field calculator
|
||
|
# https://fomoro.com/research/article/receptive-field-calculator
|
||
|
# https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks#hyperparameters
|
||
|
# https://distill.pub/2019/computing-receptive-fields/
|
||
|
# Rl-1 = Sl * Rl + (Kl - Sl)
|
||
|
|
||
|
|
||
4 years ago
|
class ConvBn(nn.Layer):
|
||
|
"""Convolution layer with batch normalization.
|
||
|
|
||
|
:param kernel_size: The x dimension of a filter kernel. Or input a tuple for
|
||
|
two image dimension.
|
||
|
:type kernel_size: int|tuple|list
|
||
|
:param num_channels_in: Number of input channels.
|
||
|
:type num_channels_in: int
|
||
|
:param num_channels_out: Number of output channels.
|
||
|
:type num_channels_out: int
|
||
|
:param stride: The x dimension of the stride. Or input a tuple for two
|
||
|
image dimension.
|
||
|
:type stride: int|tuple|list
|
||
|
:param padding: The x dimension of the padding. Or input a tuple for two
|
||
|
image dimension.
|
||
|
:type padding: int|tuple|list
|
||
|
:param act: Activation type, relu|brelu
|
||
|
:type act: string
|
||
|
:return: Batch norm layer after convolution layer.
|
||
|
:rtype: Variable
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, num_channels_in, num_channels_out, kernel_size, stride,
|
||
|
padding, act):
|
||
|
|
||
|
super().__init__()
|
||
|
assert len(kernel_size) == 2
|
||
|
assert len(stride) == 2
|
||
|
assert len(padding) == 2
|
||
|
self.kernel_size = kernel_size
|
||
|
self.stride = stride
|
||
|
self.padding = padding
|
||
|
|
||
|
self.conv = nn.Conv2D(
|
||
|
num_channels_in,
|
||
|
num_channels_out,
|
||
|
kernel_size=kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
weight_attr=None,
|
||
|
bias_attr=False,
|
||
|
data_format='NCHW')
|
||
|
|
||
|
self.bn = nn.BatchNorm2D(
|
||
|
num_channels_out,
|
||
|
weight_attr=None,
|
||
|
bias_attr=None,
|
||
|
data_format='NCHW')
|
||
|
self.act = F.relu if act == 'relu' else brelu
|
||
|
|
||
|
def forward(self, x, x_len):
|
||
|
"""
|
||
|
x(Tensor): audio, shape [B, C, D, T]
|
||
|
"""
|
||
|
x = self.conv(x)
|
||
|
x = self.bn(x)
|
||
|
x = self.act(x)
|
||
|
|
||
|
x_len = (x_len - self.kernel_size[1] + 2 * self.padding[1]
|
||
|
) // self.stride[1] + 1
|
||
|
|
||
|
# reset padding part to 0
|
||
|
masks = make_non_pad_mask(x_len) #[B, T]
|
||
|
masks = masks.unsqueeze(1).unsqueeze(1) # [B, 1, 1, T]
|
||
3 years ago
|
# TODO(Hui Zhang): not support bool multiply
|
||
|
# masks = masks.type_as(x)
|
||
|
masks = masks.astype(x.dtype)
|
||
|
x = x.multiply(masks)
|
||
4 years ago
|
return x, x_len
|
||
|
|
||
|
|
||
|
class ConvStack(nn.Layer):
|
||
|
"""Convolution group with stacked convolution layers.
|
||
|
|
||
|
:param feat_size: audio feature dim.
|
||
|
:type feat_size: int
|
||
|
:param num_stacks: Number of stacked convolution layers.
|
||
|
:type num_stacks: int
|
||
|
"""
|
||
|
|
||
|
def __init__(self, feat_size, num_stacks):
|
||
|
super().__init__()
|
||
|
self.feat_size = feat_size # D
|
||
|
self.num_stacks = num_stacks
|
||
|
|
||
|
self.conv_in = ConvBn(
|
||
|
num_channels_in=1,
|
||
|
num_channels_out=32,
|
||
|
kernel_size=(41, 11), #[D, T]
|
||
|
stride=(2, 3),
|
||
|
padding=(20, 5),
|
||
|
act='brelu')
|
||
|
|
||
|
out_channel = 32
|
||
|
convs = [
|
||
|
ConvBn(
|
||
|
num_channels_in=32,
|
||
|
num_channels_out=out_channel,
|
||
|
kernel_size=(21, 11),
|
||
|
stride=(2, 1),
|
||
|
padding=(10, 5),
|
||
|
act='brelu') for i in range(num_stacks - 1)
|
||
|
]
|
||
|
self.conv_stack = nn.LayerList(convs)
|
||
|
|
||
|
# conv output feat_dim
|
||
|
output_height = (feat_size - 1) // 2 + 1
|
||
|
for i in range(self.num_stacks - 1):
|
||
|
output_height = (output_height - 1) // 2 + 1
|
||
|
self.output_height = out_channel * output_height
|
||
|
|
||
|
def forward(self, x, x_len):
|
||
|
"""
|
||
|
x: shape [B, C, D, T]
|
||
|
x_len : shape [B]
|
||
|
"""
|
||
|
x, x_len = self.conv_in(x, x_len)
|
||
|
for i, conv in enumerate(self.conv_stack):
|
||
|
x, x_len = conv(x, x_len)
|
||
|
return x, x_len
|