|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""Evaluation for DeepSpeech2 model."""
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import soundfile
|
|
|
|
|
|
|
|
from paddlespeech.s2t.exps.deepspeech2.config import get_cfg_defaults
|
|
|
|
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
|
|
|
from paddlespeech.s2t.io.collator import SpeechCollator
|
|
|
|
from paddlespeech.s2t.models.ds2 import DeepSpeech2Model
|
|
|
|
from paddlespeech.s2t.models.ds2_online import DeepSpeech2ModelOnline
|
|
|
|
from paddlespeech.s2t.training.cli import default_argument_parser
|
|
|
|
from paddlespeech.s2t.utils import mp_tools
|
|
|
|
from paddlespeech.s2t.utils.checkpoint import Checkpoint
|
|
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
from paddlespeech.s2t.utils.utility import print_arguments
|
|
|
|
from paddlespeech.s2t.utils.utility import UpdateConfig
|
|
|
|
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
|
|
|
|
|
|
class DeepSpeech2Tester_hub():
|
|
|
|
def __init__(self, config, args):
|
|
|
|
self.args = args
|
|
|
|
self.config = config
|
|
|
|
self.audio_file = args.audio_file
|
|
|
|
self.collate_fn_test = SpeechCollator.from_config(config)
|
|
|
|
self._text_featurizer = TextFeaturizer(
|
|
|
|
unit_type=config.collator.unit_type, vocab_filepath=None)
|
|
|
|
|
|
|
|
def compute_result_transcripts(self, audio, audio_len, vocab_list, cfg):
|
|
|
|
result_transcripts = self.model.decode(
|
|
|
|
audio,
|
|
|
|
audio_len,
|
|
|
|
vocab_list,
|
|
|
|
decoding_method=cfg.decoding_method,
|
|
|
|
lang_model_path=cfg.lang_model_path,
|
|
|
|
beam_alpha=cfg.alpha,
|
|
|
|
beam_beta=cfg.beta,
|
|
|
|
beam_size=cfg.beam_size,
|
|
|
|
cutoff_prob=cfg.cutoff_prob,
|
|
|
|
cutoff_top_n=cfg.cutoff_top_n,
|
|
|
|
num_processes=cfg.num_proc_bsearch)
|
|
|
|
|
|
|
|
return result_transcripts
|
|
|
|
|
|
|
|
@mp_tools.rank_zero_only
|
|
|
|
@paddle.no_grad()
|
|
|
|
def test(self):
|
|
|
|
self.model.eval()
|
|
|
|
cfg = self.config
|
|
|
|
audio_file = self.audio_file
|
|
|
|
collate_fn_test = self.collate_fn_test
|
|
|
|
audio, _ = collate_fn_test.process_utterance(
|
|
|
|
audio_file=audio_file, transcript=" ")
|
|
|
|
audio_len = audio.shape[0]
|
|
|
|
audio = paddle.to_tensor(audio, dtype='float32')
|
|
|
|
audio_len = paddle.to_tensor(audio_len)
|
|
|
|
audio = paddle.unsqueeze(audio, axis=0)
|
|
|
|
vocab_list = collate_fn_test.vocab_list
|
|
|
|
result_transcripts = self.compute_result_transcripts(
|
|
|
|
audio, audio_len, vocab_list, cfg.decoding)
|
|
|
|
logger.info("result_transcripts: " + result_transcripts[0])
|
|
|
|
|
|
|
|
def run_test(self):
|
|
|
|
self.resume()
|
|
|
|
try:
|
|
|
|
self.test()
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
exit(-1)
|
|
|
|
|
|
|
|
def setup(self):
|
|
|
|
"""Setup the experiment.
|
|
|
|
"""
|
|
|
|
paddle.set_device('gpu' if self.args.ngpu > 0 else 'cpu')
|
|
|
|
|
|
|
|
self.setup_output_dir()
|
|
|
|
self.setup_checkpointer()
|
|
|
|
|
|
|
|
self.setup_model()
|
|
|
|
|
|
|
|
def setup_output_dir(self):
|
|
|
|
"""Create a directory used for output.
|
|
|
|
"""
|
|
|
|
# output dir
|
|
|
|
if self.args.output:
|
|
|
|
output_dir = Path(self.args.output).expanduser()
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
else:
|
|
|
|
output_dir = Path(
|
|
|
|
self.args.checkpoint_path).expanduser().parent.parent
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.output_dir = output_dir
|
|
|
|
|
|
|
|
def setup_model(self):
|
|
|
|
config = self.config.clone()
|
|
|
|
with UpdateConfig(config):
|
|
|
|
config.model.feat_size = self.collate_fn_test.feature_size
|
|
|
|
config.model.dict_size = self.collate_fn_test.vocab_size
|
|
|
|
|
|
|
|
if self.args.model_type == 'offline':
|
|
|
|
model = DeepSpeech2Model.from_config(config.model)
|
|
|
|
elif self.args.model_type == 'online':
|
|
|
|
model = DeepSpeech2ModelOnline.from_config(config.model)
|
|
|
|
else:
|
|
|
|
raise Exception("wrong model type")
|
|
|
|
|
|
|
|
self.model = model
|
|
|
|
|
|
|
|
def setup_checkpointer(self):
|
|
|
|
"""Create a directory used to save checkpoints into.
|
|
|
|
|
|
|
|
It is "checkpoints" inside the output directory.
|
|
|
|
"""
|
|
|
|
# checkpoint dir
|
|
|
|
checkpoint_dir = self.output_dir / "checkpoints"
|
|
|
|
checkpoint_dir.mkdir(exist_ok=True)
|
|
|
|
|
|
|
|
self.checkpoint_dir = checkpoint_dir
|
|
|
|
|
|
|
|
self.checkpoint = Checkpoint(
|
|
|
|
kbest_n=self.config.training.checkpoint.kbest_n,
|
|
|
|
latest_n=self.config.training.checkpoint.latest_n)
|
|
|
|
|
|
|
|
def resume(self):
|
|
|
|
"""Resume from the checkpoint at checkpoints in the output
|
|
|
|
directory or load a specified checkpoint.
|
|
|
|
"""
|
|
|
|
params_path = self.args.checkpoint_path + ".pdparams"
|
|
|
|
model_dict = paddle.load(params_path)
|
|
|
|
self.model.set_state_dict(model_dict)
|
|
|
|
|
|
|
|
|
|
|
|
def check(audio_file):
|
|
|
|
logger.info("checking the audio file format......")
|
|
|
|
try:
|
|
|
|
sig, sample_rate = soundfile.read(audio_file)
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(str(e))
|
|
|
|
logger.error(
|
|
|
|
"can not open the wav file, please check the audio file format")
|
|
|
|
sys.exit(-1)
|
|
|
|
logger.info("The sample rate is %d" % sample_rate)
|
|
|
|
assert (sample_rate == 16000)
|
|
|
|
logger.info("The audio file format is right")
|
|
|
|
|
|
|
|
|
|
|
|
def main_sp(config, args):
|
|
|
|
exp = DeepSpeech2Tester_hub(config, args)
|
|
|
|
exp.setup()
|
|
|
|
exp.run_test()
|
|
|
|
|
|
|
|
|
|
|
|
def main(config, args):
|
|
|
|
main_sp(config, args)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = default_argument_parser()
|
|
|
|
parser.add_argument(
|
|
|
|
"--model_type", type=str, default='offline', help='offline/online')
|
|
|
|
parser.add_argument("--audio_file", type=str, help='audio file path')
|
|
|
|
# save asr result to
|
|
|
|
parser.add_argument(
|
|
|
|
"--result_file", type=str, help="path of save the asr result")
|
|
|
|
args = parser.parse_args()
|
|
|
|
print_arguments(args, globals())
|
|
|
|
if not os.path.isfile(args.audio_file):
|
|
|
|
print("Please input the audio file path")
|
|
|
|
sys.exit(-1)
|
|
|
|
check(args.audio_file)
|
|
|
|
print("model_type:{}".format(args.model_type))
|
|
|
|
|
|
|
|
# https://yaml.org/type/float.html
|
|
|
|
config = get_cfg_defaults(args.model_type)
|
|
|
|
if args.config:
|
|
|
|
config.merge_from_file(args.config)
|
|
|
|
if args.opts:
|
|
|
|
config.merge_from_list(args.opts)
|
|
|
|
config.freeze()
|
|
|
|
print(config)
|
|
|
|
if args.dump_config:
|
|
|
|
with open(args.dump_config, 'w') as f:
|
|
|
|
print(config, file=f)
|
|
|
|
|
|
|
|
main(config, args)
|