You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deploy/swig_decoders_wrapper.py

105 lines
3.6 KiB

"""Wrapper for various CTC decoders in SWIG."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import swig_decoders
import multiprocessing
class Scorer(swig_decoders.Scorer):
"""Wrapper for Scorer.
:param alpha: Parameter associated with language model. Don't use
language model when alpha = 0.
:type alpha: float
:param beta: Parameter associated with word count. Don't use word
count when beta = 0.
:type beta: float
:model_path: Path to load language model.
:type model_path: basestring
"""
def __init__(self, alpha, beta, model_path):
swig_decoders.Scorer.__init__(self, alpha, beta, model_path)
def ctc_best_path_decoder(probs_seq, vocabulary):
"""Wrapper for ctc best path decoder in swig.
:param probs_seq: 2-D list of probability distributions over each time
step, with each element being a list of normalized
probabilities over vocabulary and blank.
:type probs_seq: 2-D list
:param vocabulary: Vocabulary list.
:type vocabulary: list
:return: Decoding result string.
:rtype: basestring
"""
return swig_decoders.ctc_best_path_decoder(probs_seq.tolist(), vocabulary)
def ctc_beam_search_decoder(
probs_seq,
beam_size,
vocabulary,
blank_id,
cutoff_prob=1.0,
ext_scoring_func=None, ):
"""Wrapper for CTC Beam Search Decoder.
:param probs_seq: 2-D list of probability distributions over each time
step, with each element being a list of normalized
probabilities over vocabulary and blank.
:type probs_seq: 2-D list
:param beam_size: Width for beam search.
:type beam_size: int
:param vocabulary: Vocabulary list.
:type vocabulary: list
:param blank_id: ID of blank.
:type blank_id: int
:param cutoff_prob: Cutoff probability in pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param ext_scoring_func: External scoring function for
partially decoded sentence, e.g. word count
or language model.
:type external_scoring_func: callable
:return: List of tuples of log probability and sentence as decoding
results, in descending order of the probability.
:rtype: list
"""
return swig_decoders.ctc_beam_search_decoder(probs_seq.tolist(), beam_size,
vocabulary, blank_id,
cutoff_prob, ext_scoring_func)
def ctc_beam_search_decoder_batch(probs_split,
beam_size,
vocabulary,
blank_id,
num_processes,
cutoff_prob=1.0,
ext_scoring_func=None):
"""Wrapper for CTC beam search decoder in batch
"""
# TODO: to resolve PicklingError
if not num_processes > 0:
raise ValueError("Number of processes must be positive!")
pool = Pool(processes=num_processes)
results = []
args_list = []
for i, probs_list in enumerate(probs_split):
args = (probs_list, beam_size, vocabulary, blank_id, cutoff_prob,
ext_scoring_func)
args_list.append(args)
results.append(pool.apply_async(ctc_beam_search_decoder, args))
pool.close()
pool.join()
beam_search_results = [result.get() for result in results]
return beam_search_results