You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/models/fastspeech2/fastspeech2_updater.py

237 lines
9.5 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from pathlib import Path
from paddle import DataParallel
from paddle import distributed as dist
from paddle.io import DataLoader
from paddle.nn import Layer
from paddle.optimizer import Optimizer
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Loss
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
from paddlespeech.t2s.training.reporter import report
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
logging.basicConfig(
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='[%Y-%m-%d %H:%M:%S]')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class FastSpeech2Updater(StandardUpdater):
def __init__(
self,
model: Layer,
optimizer: Optimizer,
dataloader: DataLoader,
init_state=None,
use_masking: bool=False,
spk_loss_scale: float=0.02,
use_weighted_masking: bool=False,
output_dir: Path=None,
enable_spk_cls: bool=False, ):
super().__init__(model, optimizer, dataloader, init_state=None)
self.criterion = FastSpeech2Loss(
use_masking=use_masking,
use_weighted_masking=use_weighted_masking, )
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
self.spk_loss_scale = spk_loss_scale
self.enable_spk_cls = enable_spk_cls
def update_core(self, batch):
self.msg = "Rank: {}, ".format(dist.get_rank())
losses_dict = {}
# spk_id!=None in multiple spk fastspeech2
spk_id = batch["spk_id"] if "spk_id" in batch else None
3 years ago
spk_emb = batch["spk_emb"] if "spk_emb" in batch else None
# No explicit speaker identifier labels are used during voice cloning training.
3 years ago
if spk_emb is not None:
spk_id = None
if type(
self.model
) == DataParallel and self.model._layers.spk_num and self.model._layers.enable_speaker_classifier:
with self.model.no_sync():
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
text=batch["text"],
text_lengths=batch["text_lengths"],
speech=batch["speech"],
speech_lengths=batch["speech_lengths"],
durations=batch["durations"],
pitch=batch["pitch"],
energy=batch["energy"],
spk_id=spk_id,
spk_emb=spk_emb)
else:
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
text=batch["text"],
text_lengths=batch["text_lengths"],
speech=batch["speech"],
speech_lengths=batch["speech_lengths"],
durations=batch["durations"],
pitch=batch["pitch"],
energy=batch["energy"],
spk_id=spk_id,
spk_emb=spk_emb)
l1_loss, duration_loss, pitch_loss, energy_loss, speaker_loss = self.criterion(
after_outs=after_outs,
before_outs=before_outs,
d_outs=d_outs,
p_outs=p_outs,
e_outs=e_outs,
ys=ys,
ds=batch["durations"],
ps=batch["pitch"],
es=batch["energy"],
ilens=batch["text_lengths"],
olens=olens,
spk_logits=spk_logits,
spk_ids=spk_id, )
scaled_speaker_loss = self.spk_loss_scale * speaker_loss
loss = l1_loss + duration_loss + pitch_loss + energy_loss + scaled_speaker_loss
optimizer = self.optimizer
optimizer.clear_grad()
loss.backward()
optimizer.step()
report("train/loss", float(loss))
report("train/l1_loss", float(l1_loss))
report("train/duration_loss", float(duration_loss))
report("train/pitch_loss", float(pitch_loss))
report("train/energy_loss", float(energy_loss))
if self.enable_spk_cls:
report("train/speaker_loss", float(speaker_loss))
report("train/scaled_speaker_loss", float(scaled_speaker_loss))
losses_dict["l1_loss"] = float(l1_loss)
losses_dict["duration_loss"] = float(duration_loss)
losses_dict["pitch_loss"] = float(pitch_loss)
losses_dict["energy_loss"] = float(energy_loss)
losses_dict["energy_loss"] = float(energy_loss)
if self.enable_spk_cls:
losses_dict["speaker_loss"] = float(speaker_loss)
losses_dict["scaled_speaker_loss"] = float(scaled_speaker_loss)
losses_dict["loss"] = float(loss)
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
class FastSpeech2Evaluator(StandardEvaluator):
def __init__(self,
model: Layer,
dataloader: DataLoader,
use_masking: bool=False,
use_weighted_masking: bool=False,
spk_loss_scale: float=0.02,
output_dir: Path=None,
enable_spk_cls: bool=False):
super().__init__(model, dataloader)
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
self.spk_loss_scale = spk_loss_scale
self.enable_spk_cls = enable_spk_cls
self.criterion = FastSpeech2Loss(
use_masking=use_masking, use_weighted_masking=use_weighted_masking)
def evaluate_core(self, batch):
self.msg = "Evaluate: "
losses_dict = {}
# spk_id!=None in multiple spk fastspeech2
spk_id = batch["spk_id"] if "spk_id" in batch else None
3 years ago
spk_emb = batch["spk_emb"] if "spk_emb" in batch else None
if spk_emb is not None:
spk_id = None
if type(
self.model
) == DataParallel and self.model._layers.spk_num and self.model._layers.enable_speaker_classifier:
with self.model.no_sync():
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
text=batch["text"],
text_lengths=batch["text_lengths"],
speech=batch["speech"],
speech_lengths=batch["speech_lengths"],
durations=batch["durations"],
pitch=batch["pitch"],
energy=batch["energy"],
spk_id=spk_id,
spk_emb=spk_emb)
else:
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
text=batch["text"],
text_lengths=batch["text_lengths"],
speech=batch["speech"],
speech_lengths=batch["speech_lengths"],
durations=batch["durations"],
pitch=batch["pitch"],
energy=batch["energy"],
spk_id=spk_id,
spk_emb=spk_emb)
l1_loss, duration_loss, pitch_loss, energy_loss, speaker_loss = self.criterion(
after_outs=after_outs,
before_outs=before_outs,
d_outs=d_outs,
p_outs=p_outs,
e_outs=e_outs,
ys=ys,
ds=batch["durations"],
ps=batch["pitch"],
es=batch["energy"],
ilens=batch["text_lengths"],
olens=olens,
spk_logits=spk_logits,
spk_ids=spk_id, )
scaled_speaker_loss = self.spk_loss_scale * speaker_loss
loss = l1_loss + duration_loss + pitch_loss + energy_loss + scaled_speaker_loss
report("eval/loss", float(loss))
report("eval/l1_loss", float(l1_loss))
report("eval/duration_loss", float(duration_loss))
report("eval/pitch_loss", float(pitch_loss))
report("eval/energy_loss", float(energy_loss))
if self.enable_spk_cls:
report("train/speaker_loss", float(speaker_loss))
report("train/scaled_speaker_loss", float(scaled_speaker_loss))
losses_dict["l1_loss"] = float(l1_loss)
losses_dict["duration_loss"] = float(duration_loss)
losses_dict["pitch_loss"] = float(pitch_loss)
losses_dict["energy_loss"] = float(energy_loss)
if self.enable_spk_cls:
losses_dict["speaker_loss"] = float(speaker_loss)
losses_dict["scaled_speaker_loss"] = float(scaled_speaker_loss)
losses_dict["loss"] = float(loss)
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
self.logger.info(self.msg)