|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
from paddle import DataParallel
|
|
|
|
from paddle import distributed as dist
|
|
|
|
from paddle.io import DataLoader
|
|
|
|
from paddle.nn import Layer
|
|
|
|
from paddle.optimizer import Optimizer
|
|
|
|
|
|
|
|
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Loss
|
|
|
|
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
|
|
|
|
from paddlespeech.t2s.training.reporter import report
|
|
|
|
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
|
|
|
|
|
|
|
|
logging.basicConfig(
|
|
|
|
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
|
|
|
|
datefmt='[%Y-%m-%d %H:%M:%S]')
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
|
|
|
|
|
|
class FastSpeech2Updater(StandardUpdater):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model: Layer,
|
|
|
|
optimizer: Optimizer,
|
|
|
|
dataloader: DataLoader,
|
|
|
|
init_state=None,
|
|
|
|
use_masking: bool=False,
|
|
|
|
spk_loss_scale: float=0.02,
|
|
|
|
use_weighted_masking: bool=False,
|
|
|
|
output_dir: Path=None,
|
|
|
|
enable_spk_cls: bool=False, ):
|
|
|
|
super().__init__(model, optimizer, dataloader, init_state=None)
|
|
|
|
|
|
|
|
self.criterion = FastSpeech2Loss(
|
|
|
|
use_masking=use_masking,
|
|
|
|
use_weighted_masking=use_weighted_masking, )
|
|
|
|
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
|
|
logger.addHandler(self.filehandler)
|
|
|
|
self.logger = logger
|
|
|
|
self.msg = ""
|
|
|
|
self.spk_loss_scale = spk_loss_scale
|
|
|
|
self.enable_spk_cls = enable_spk_cls
|
|
|
|
|
|
|
|
def update_core(self, batch):
|
|
|
|
self.msg = "Rank: {}, ".format(dist.get_rank())
|
|
|
|
losses_dict = {}
|
|
|
|
# spk_id!=None in multiple spk fastspeech2
|
|
|
|
spk_id = batch["spk_id"] if "spk_id" in batch else None
|
|
|
|
spk_emb = batch["spk_emb"] if "spk_emb" in batch else None
|
|
|
|
# No explicit speaker identifier labels are used during voice cloning training.
|
|
|
|
if spk_emb is not None:
|
|
|
|
spk_id = None
|
|
|
|
|
|
|
|
if type(
|
|
|
|
self.model
|
|
|
|
) == DataParallel and self.model._layers.spk_num and self.model._layers.enable_speaker_classifier:
|
|
|
|
with self.model.no_sync():
|
|
|
|
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
|
|
|
|
text=batch["text"],
|
|
|
|
text_lengths=batch["text_lengths"],
|
|
|
|
speech=batch["speech"],
|
|
|
|
speech_lengths=batch["speech_lengths"],
|
|
|
|
durations=batch["durations"],
|
|
|
|
pitch=batch["pitch"],
|
|
|
|
energy=batch["energy"],
|
|
|
|
spk_id=spk_id,
|
|
|
|
spk_emb=spk_emb)
|
|
|
|
else:
|
|
|
|
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
|
|
|
|
text=batch["text"],
|
|
|
|
text_lengths=batch["text_lengths"],
|
|
|
|
speech=batch["speech"],
|
|
|
|
speech_lengths=batch["speech_lengths"],
|
|
|
|
durations=batch["durations"],
|
|
|
|
pitch=batch["pitch"],
|
|
|
|
energy=batch["energy"],
|
|
|
|
spk_id=spk_id,
|
|
|
|
spk_emb=spk_emb)
|
|
|
|
|
|
|
|
l1_loss, duration_loss, pitch_loss, energy_loss, speaker_loss = self.criterion(
|
|
|
|
after_outs=after_outs,
|
|
|
|
before_outs=before_outs,
|
|
|
|
d_outs=d_outs,
|
|
|
|
p_outs=p_outs,
|
|
|
|
e_outs=e_outs,
|
|
|
|
ys=ys,
|
|
|
|
ds=batch["durations"],
|
|
|
|
ps=batch["pitch"],
|
|
|
|
es=batch["energy"],
|
|
|
|
ilens=batch["text_lengths"],
|
|
|
|
olens=olens,
|
|
|
|
spk_logits=spk_logits,
|
|
|
|
spk_ids=spk_id, )
|
|
|
|
|
|
|
|
scaled_speaker_loss = self.spk_loss_scale * speaker_loss
|
|
|
|
loss = l1_loss + duration_loss + pitch_loss + energy_loss + scaled_speaker_loss
|
|
|
|
|
|
|
|
optimizer = self.optimizer
|
|
|
|
optimizer.clear_grad()
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
report("train/loss", float(loss))
|
|
|
|
report("train/l1_loss", float(l1_loss))
|
|
|
|
report("train/duration_loss", float(duration_loss))
|
|
|
|
report("train/pitch_loss", float(pitch_loss))
|
|
|
|
report("train/energy_loss", float(energy_loss))
|
|
|
|
if self.enable_spk_cls:
|
|
|
|
report("train/speaker_loss", float(speaker_loss))
|
|
|
|
report("train/scaled_speaker_loss", float(scaled_speaker_loss))
|
|
|
|
|
|
|
|
losses_dict["l1_loss"] = float(l1_loss)
|
|
|
|
losses_dict["duration_loss"] = float(duration_loss)
|
|
|
|
losses_dict["pitch_loss"] = float(pitch_loss)
|
|
|
|
losses_dict["energy_loss"] = float(energy_loss)
|
|
|
|
losses_dict["energy_loss"] = float(energy_loss)
|
|
|
|
if self.enable_spk_cls:
|
|
|
|
losses_dict["speaker_loss"] = float(speaker_loss)
|
|
|
|
losses_dict["scaled_speaker_loss"] = float(scaled_speaker_loss)
|
|
|
|
losses_dict["loss"] = float(loss)
|
|
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
|
|
for k, v in losses_dict.items())
|
|
|
|
|
|
|
|
|
|
|
|
class FastSpeech2Evaluator(StandardEvaluator):
|
|
|
|
def __init__(self,
|
|
|
|
model: Layer,
|
|
|
|
dataloader: DataLoader,
|
|
|
|
use_masking: bool=False,
|
|
|
|
use_weighted_masking: bool=False,
|
|
|
|
spk_loss_scale: float=0.02,
|
|
|
|
output_dir: Path=None,
|
|
|
|
enable_spk_cls: bool=False):
|
|
|
|
super().__init__(model, dataloader)
|
|
|
|
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
|
|
logger.addHandler(self.filehandler)
|
|
|
|
self.logger = logger
|
|
|
|
self.msg = ""
|
|
|
|
self.spk_loss_scale = spk_loss_scale
|
|
|
|
self.enable_spk_cls = enable_spk_cls
|
|
|
|
|
|
|
|
self.criterion = FastSpeech2Loss(
|
|
|
|
use_masking=use_masking, use_weighted_masking=use_weighted_masking)
|
|
|
|
|
|
|
|
def evaluate_core(self, batch):
|
|
|
|
self.msg = "Evaluate: "
|
|
|
|
losses_dict = {}
|
|
|
|
# spk_id!=None in multiple spk fastspeech2
|
|
|
|
spk_id = batch["spk_id"] if "spk_id" in batch else None
|
|
|
|
spk_emb = batch["spk_emb"] if "spk_emb" in batch else None
|
|
|
|
if spk_emb is not None:
|
|
|
|
spk_id = None
|
|
|
|
|
|
|
|
if type(
|
|
|
|
self.model
|
|
|
|
) == DataParallel and self.model._layers.spk_num and self.model._layers.enable_speaker_classifier:
|
|
|
|
with self.model.no_sync():
|
|
|
|
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
|
|
|
|
text=batch["text"],
|
|
|
|
text_lengths=batch["text_lengths"],
|
|
|
|
speech=batch["speech"],
|
|
|
|
speech_lengths=batch["speech_lengths"],
|
|
|
|
durations=batch["durations"],
|
|
|
|
pitch=batch["pitch"],
|
|
|
|
energy=batch["energy"],
|
|
|
|
spk_id=spk_id,
|
|
|
|
spk_emb=spk_emb)
|
|
|
|
else:
|
|
|
|
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
|
|
|
|
text=batch["text"],
|
|
|
|
text_lengths=batch["text_lengths"],
|
|
|
|
speech=batch["speech"],
|
|
|
|
speech_lengths=batch["speech_lengths"],
|
|
|
|
durations=batch["durations"],
|
|
|
|
pitch=batch["pitch"],
|
|
|
|
energy=batch["energy"],
|
|
|
|
spk_id=spk_id,
|
|
|
|
spk_emb=spk_emb)
|
|
|
|
|
|
|
|
l1_loss, duration_loss, pitch_loss, energy_loss, speaker_loss = self.criterion(
|
|
|
|
after_outs=after_outs,
|
|
|
|
before_outs=before_outs,
|
|
|
|
d_outs=d_outs,
|
|
|
|
p_outs=p_outs,
|
|
|
|
e_outs=e_outs,
|
|
|
|
ys=ys,
|
|
|
|
ds=batch["durations"],
|
|
|
|
ps=batch["pitch"],
|
|
|
|
es=batch["energy"],
|
|
|
|
ilens=batch["text_lengths"],
|
|
|
|
olens=olens,
|
|
|
|
spk_logits=spk_logits,
|
|
|
|
spk_ids=spk_id, )
|
|
|
|
|
|
|
|
scaled_speaker_loss = self.spk_loss_scale * speaker_loss
|
|
|
|
loss = l1_loss + duration_loss + pitch_loss + energy_loss + scaled_speaker_loss
|
|
|
|
|
|
|
|
report("eval/loss", float(loss))
|
|
|
|
report("eval/l1_loss", float(l1_loss))
|
|
|
|
report("eval/duration_loss", float(duration_loss))
|
|
|
|
report("eval/pitch_loss", float(pitch_loss))
|
|
|
|
report("eval/energy_loss", float(energy_loss))
|
|
|
|
if self.enable_spk_cls:
|
|
|
|
report("train/speaker_loss", float(speaker_loss))
|
|
|
|
report("train/scaled_speaker_loss", float(scaled_speaker_loss))
|
|
|
|
|
|
|
|
losses_dict["l1_loss"] = float(l1_loss)
|
|
|
|
losses_dict["duration_loss"] = float(duration_loss)
|
|
|
|
losses_dict["pitch_loss"] = float(pitch_loss)
|
|
|
|
losses_dict["energy_loss"] = float(energy_loss)
|
|
|
|
if self.enable_spk_cls:
|
|
|
|
losses_dict["speaker_loss"] = float(speaker_loss)
|
|
|
|
losses_dict["scaled_speaker_loss"] = float(scaled_speaker_loss)
|
|
|
|
losses_dict["loss"] = float(loss)
|
|
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
|
|
for k, v in losses_dict.items())
|
|
|
|
self.logger.info(self.msg)
|