You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/models/fastspeech2/fastspeech2.py

1214 lines
49 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
3 years ago
# Modified from espnet(https://github.com/espnet/espnet)
"""Fastspeech2 related modules for paddle"""
from typing import Dict
from typing import List
from typing import Sequence
from typing import Tuple
3 years ago
from typing import Union
3 years ago
import numpy as np
import paddle
import paddle.nn.functional as F
from paddle import nn
from typeguard import check_argument_types
from paddlespeech.t2s.modules.adversarial_loss.gradient_reversal import GradientReversalLayer
from paddlespeech.t2s.modules.adversarial_loss.speaker_classifier import SpeakerClassifier
from paddlespeech.t2s.modules.nets_utils import initialize
from paddlespeech.t2s.modules.nets_utils import make_non_pad_mask
from paddlespeech.t2s.modules.nets_utils import make_pad_mask
3 years ago
from paddlespeech.t2s.modules.predictor.duration_predictor import DurationPredictor
from paddlespeech.t2s.modules.predictor.duration_predictor import DurationPredictorLoss
from paddlespeech.t2s.modules.predictor.length_regulator import LengthRegulator
from paddlespeech.t2s.modules.predictor.variance_predictor import VariancePredictor
from paddlespeech.t2s.modules.tacotron2.decoder import Postnet
from paddlespeech.t2s.modules.transformer.encoder import CNNDecoder
from paddlespeech.t2s.modules.transformer.encoder import CNNPostnet
from paddlespeech.t2s.modules.transformer.encoder import ConformerEncoder
from paddlespeech.t2s.modules.transformer.encoder import TransformerEncoder
class FastSpeech2(nn.Layer):
"""FastSpeech2 module.
This is a module of FastSpeech2 described in `FastSpeech 2: Fast and
High-Quality End-to-End Text to Speech`_. Instead of quantized pitch and
energy, we use token-averaged value introduced in `FastPitch: Parallel
Text-to-speech with Pitch Prediction`_.
.. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`:
https://arxiv.org/abs/2006.04558
.. _`FastPitch: Parallel Text-to-speech with Pitch Prediction`:
https://arxiv.org/abs/2006.06873
Args:
Returns:
"""
def __init__(
self,
# network structure related
idim: int,
odim: int,
adim: int=384,
aheads: int=4,
elayers: int=6,
eunits: int=1536,
dlayers: int=6,
dunits: int=1536,
postnet_layers: int=5,
postnet_chans: int=512,
postnet_filts: int=5,
postnet_dropout_rate: float=0.5,
positionwise_layer_type: str="conv1d",
positionwise_conv_kernel_size: int=1,
use_scaled_pos_enc: bool=True,
use_batch_norm: bool=True,
encoder_normalize_before: bool=True,
decoder_normalize_before: bool=True,
encoder_concat_after: bool=False,
decoder_concat_after: bool=False,
reduction_factor: int=1,
encoder_type: str="transformer",
decoder_type: str="transformer",
# for transformer
transformer_enc_dropout_rate: float=0.1,
transformer_enc_positional_dropout_rate: float=0.1,
transformer_enc_attn_dropout_rate: float=0.1,
transformer_dec_dropout_rate: float=0.1,
transformer_dec_positional_dropout_rate: float=0.1,
transformer_dec_attn_dropout_rate: float=0.1,
# for conformer
conformer_pos_enc_layer_type: str="rel_pos",
conformer_self_attn_layer_type: str="rel_selfattn",
conformer_activation_type: str="swish",
use_macaron_style_in_conformer: bool=True,
use_cnn_in_conformer: bool=True,
zero_triu: bool=False,
conformer_enc_kernel_size: int=7,
conformer_dec_kernel_size: int=31,
# for CNN Decoder
cnn_dec_dropout_rate: float=0.2,
cnn_postnet_dropout_rate: float=0.2,
cnn_postnet_resblock_kernel_sizes: List[int]=[256, 256],
cnn_postnet_kernel_size: int=5,
cnn_decoder_embedding_dim: int=256,
# duration predictor
duration_predictor_layers: int=2,
duration_predictor_chans: int=384,
duration_predictor_kernel_size: int=3,
duration_predictor_dropout_rate: float=0.1,
# energy predictor
energy_predictor_layers: int=2,
energy_predictor_chans: int=384,
energy_predictor_kernel_size: int=3,
energy_predictor_dropout: float=0.5,
energy_embed_kernel_size: int=9,
energy_embed_dropout: float=0.5,
stop_gradient_from_energy_predictor: bool=False,
# pitch predictor
pitch_predictor_layers: int=2,
pitch_predictor_chans: int=384,
pitch_predictor_kernel_size: int=3,
pitch_predictor_dropout: float=0.5,
pitch_embed_kernel_size: int=9,
pitch_embed_dropout: float=0.5,
stop_gradient_from_pitch_predictor: bool=False,
# spk emb
spk_num: int=None,
spk_embed_dim: int=None,
spk_embed_integration_type: str="add",
# tone emb
tone_num: int=None,
tone_embed_dim: int=None,
tone_embed_integration_type: str="add",
# training related
init_type: str="xavier_uniform",
init_enc_alpha: float=1.0,
init_dec_alpha: float=1.0,
# speaker classifier
enable_speaker_classifier: bool=False,
hidden_sc_dim: int=256, ):
"""Initialize FastSpeech2 module.
Args:
idim (int):
Dimension of the inputs.
odim (int):
Dimension of the outputs.
adim (int):
Attention dimension.
aheads (int):
Number of attention heads.
elayers (int):
Number of encoder layers.
eunits (int):
Number of encoder hidden units.
dlayers (int):
Number of decoder layers.
dunits (int):
Number of decoder hidden units.
postnet_layers (int):
Number of postnet layers.
postnet_chans (int):
Number of postnet channels.
postnet_filts (int):
Kernel size of postnet.
postnet_dropout_rate (float):
Dropout rate in postnet.
use_scaled_pos_enc (bool):
Whether to use trainable scaled pos encoding.
use_batch_norm (bool):
Whether to use batch normalization in encoder prenet.
encoder_normalize_before (bool):
Whether to apply layernorm layer before encoder block.
decoder_normalize_before (bool):
Whether to apply layernorm layer before decoder block.
encoder_concat_after (bool):
Whether to concatenate attention layer's input and output in encoder.
decoder_concat_after (bool):
Whether to concatenate attention layer's input and output in decoder.
reduction_factor (int):
Reduction factor.
encoder_type (str):
Encoder type ("transformer" or "conformer").
decoder_type (str):
Decoder type ("transformer" or "conformer").
transformer_enc_dropout_rate (float):
Dropout rate in encoder except attention and positional encoding.
transformer_enc_positional_dropout_rate (float):
Dropout rate after encoder positional encoding.
transformer_enc_attn_dropout_rate (float):
Dropout rate in encoder self-attention module.
transformer_dec_dropout_rate (float):
Dropout rate in decoder except attention & positional encoding.
transformer_dec_positional_dropout_rate (float):
Dropout rate after decoder positional encoding.
transformer_dec_attn_dropout_rate (float):
Dropout rate in decoder self-attention module.
conformer_pos_enc_layer_type (str):
Pos encoding layer type in conformer.
conformer_self_attn_layer_type (str):
Self-attention layer type in conformer
conformer_activation_type (str):
Activation function type in conformer.
use_macaron_style_in_conformer (bool):
Whether to use macaron style FFN.
use_cnn_in_conformer (bool):
Whether to use CNN in conformer.
zero_triu (bool):
Whether to use zero triu in relative self-attention module.
conformer_enc_kernel_size (int):
Kernel size of encoder conformer.
conformer_dec_kernel_size (int):
Kernel size of decoder conformer.
duration_predictor_layers (int):
Number of duration predictor layers.
duration_predictor_chans (int):
Number of duration predictor channels.
duration_predictor_kernel_size (int):
Kernel size of duration predictor.
duration_predictor_dropout_rate (float):
Dropout rate in duration predictor.
pitch_predictor_layers (int):
Number of pitch predictor layers.
pitch_predictor_chans (int):
Number of pitch predictor channels.
pitch_predictor_kernel_size (int):
Kernel size of pitch predictor.
pitch_predictor_dropout_rate (float):
Dropout rate in pitch predictor.
pitch_embed_kernel_size (float):
Kernel size of pitch embedding.
pitch_embed_dropout_rate (float):
Dropout rate for pitch embedding.
stop_gradient_from_pitch_predictor (bool):
Whether to stop gradient from pitch predictor to encoder.
energy_predictor_layers (int):
Number of energy predictor layers.
energy_predictor_chans (int):
Number of energy predictor channels.
energy_predictor_kernel_size (int):
Kernel size of energy predictor.
energy_predictor_dropout_rate (float):
Dropout rate in energy predictor.
energy_embed_kernel_size (float):
Kernel size of energy embedding.
energy_embed_dropout_rate (float):
Dropout rate for energy embedding.
stop_gradient_from_energy_predictorbool):
Whether to stop gradient from energy predictor to encoder.
spk_num (Optional[int]):
Number of speakers. If not None, assume that the spk_embed_dim is not None,
spk_ids will be provided as the input and use spk_embedding_table.
spk_embed_dim (Optional[int]):
Speaker embedding dimension. If not None,
assume that spk_emb will be provided as the input or spk_num is not None.
spk_embed_integration_type (str):
How to integrate speaker embedding.
tone_num (Optional[int]):
Number of tones. If not None, assume that the
tone_ids will be provided as the input and use tone_embedding_table.
tone_embed_dim (Optional[int]):
Tone embedding dimension. If not None, assume that tone_num is not None.
tone_embed_integration_type (str):
How to integrate tone embedding.
init_type (str):
How to initialize transformer parameters.
init_enc_alpha float):
Initial value of alpha in scaled pos encoding of the encoder.
init_dec_alpha (float):
Initial value of alpha in scaled pos encoding of the decoder.
enable_speaker_classifier (bool):
Whether to use speaker classifier module
hidden_sc_dim (int):
The hidden layer dim of speaker classifier
"""
assert check_argument_types()
super().__init__()
# store hyperparameters
self.odim = odim
self.reduction_factor = reduction_factor
self.encoder_type = encoder_type
self.decoder_type = decoder_type
self.stop_gradient_from_pitch_predictor = stop_gradient_from_pitch_predictor
self.stop_gradient_from_energy_predictor = stop_gradient_from_energy_predictor
self.use_scaled_pos_enc = use_scaled_pos_enc
self.hidden_sc_dim = hidden_sc_dim
self.spk_num = spk_num
self.enable_speaker_classifier = enable_speaker_classifier
self.spk_embed_dim = spk_embed_dim
if self.spk_embed_dim is not None:
self.spk_embed_integration_type = spk_embed_integration_type
self.tone_embed_dim = tone_embed_dim
if self.tone_embed_dim is not None:
self.tone_embed_integration_type = tone_embed_integration_type
# use idx 0 as padding idx
self.padding_idx = 0
# initialize parameters
initialize(self, init_type)
if spk_num and self.spk_embed_dim:
self.spk_embedding_table = nn.Embedding(
num_embeddings=spk_num,
embedding_dim=self.spk_embed_dim,
padding_idx=self.padding_idx)
if self.tone_embed_dim is not None:
self.tone_embedding_table = nn.Embedding(
num_embeddings=tone_num,
embedding_dim=self.tone_embed_dim,
padding_idx=self.padding_idx)
# get positional encoding layer type
transformer_pos_enc_layer_type = "scaled_abs_pos" if self.use_scaled_pos_enc else "abs_pos"
# define encoder
encoder_input_layer = nn.Embedding(
num_embeddings=idim,
embedding_dim=adim,
padding_idx=self.padding_idx)
if encoder_type == "transformer":
self.encoder = TransformerEncoder(
idim=idim,
attention_dim=adim,
attention_heads=aheads,
linear_units=eunits,
num_blocks=elayers,
input_layer=encoder_input_layer,
dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate,
pos_enc_layer_type=transformer_pos_enc_layer_type,
normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size, )
elif encoder_type == "conformer":
self.encoder = ConformerEncoder(
idim=idim,
attention_dim=adim,
attention_heads=aheads,
linear_units=eunits,
num_blocks=elayers,
input_layer=encoder_input_layer,
dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate,
normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
pos_enc_layer_type=conformer_pos_enc_layer_type,
selfattention_layer_type=conformer_self_attn_layer_type,
activation_type=conformer_activation_type,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_enc_kernel_size,
zero_triu=zero_triu, )
else:
raise ValueError(f"{encoder_type} is not supported.")
# define additional projection for speaker embedding
if self.spk_embed_dim is not None:
if self.spk_embed_integration_type == "add":
self.spk_projection = nn.Linear(self.spk_embed_dim, adim)
else:
self.spk_projection = nn.Linear(adim + self.spk_embed_dim, adim)
# define additional projection for tone embedding
if self.tone_embed_dim is not None:
if self.tone_embed_integration_type == "add":
self.tone_projection = nn.Linear(self.tone_embed_dim, adim)
else:
self.tone_projection = nn.Linear(adim + self.tone_embed_dim,
adim)
if self.spk_num and self.enable_speaker_classifier:
# set lambda = 1
self.grad_reverse = GradientReversalLayer(1)
self.speaker_classifier = SpeakerClassifier(
idim=adim, hidden_sc_dim=self.hidden_sc_dim, spk_num=spk_num)
# define duration predictor
self.duration_predictor = DurationPredictor(
idim=adim,
n_layers=duration_predictor_layers,
n_chans=duration_predictor_chans,
kernel_size=duration_predictor_kernel_size,
dropout_rate=duration_predictor_dropout_rate, )
# define pitch predictor
self.pitch_predictor = VariancePredictor(
idim=adim,
n_layers=pitch_predictor_layers,
n_chans=pitch_predictor_chans,
kernel_size=pitch_predictor_kernel_size,
dropout_rate=pitch_predictor_dropout, )
# We use continuous pitch + FastPitch style avg
self.pitch_embed = nn.Sequential(
nn.Conv1D(
in_channels=1,
out_channels=adim,
kernel_size=pitch_embed_kernel_size,
padding=(pitch_embed_kernel_size - 1) // 2, ),
nn.Dropout(pitch_embed_dropout), )
# define energy predictor
self.energy_predictor = VariancePredictor(
idim=adim,
n_layers=energy_predictor_layers,
n_chans=energy_predictor_chans,
kernel_size=energy_predictor_kernel_size,
dropout_rate=energy_predictor_dropout, )
# We use continuous enegy + FastPitch style avg
self.energy_embed = nn.Sequential(
nn.Conv1D(
in_channels=1,
out_channels=adim,
kernel_size=energy_embed_kernel_size,
padding=(energy_embed_kernel_size - 1) // 2, ),
nn.Dropout(energy_embed_dropout), )
# define length regulator
self.length_regulator = LengthRegulator()
# define decoder
# NOTE: we use encoder as decoder
# because fastspeech's decoder is the same as encoder
if decoder_type == "transformer":
self.decoder = TransformerEncoder(
idim=0,
attention_dim=adim,
attention_heads=aheads,
linear_units=dunits,
num_blocks=dlayers,
# in decoder, don't need layer before pos_enc_class (we use embedding here in encoder)
input_layer=None,
dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate,
attention_dropout_rate=transformer_dec_attn_dropout_rate,
pos_enc_layer_type=transformer_pos_enc_layer_type,
normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size, )
elif decoder_type == "conformer":
self.decoder = ConformerEncoder(
idim=0,
attention_dim=adim,
attention_heads=aheads,
linear_units=dunits,
num_blocks=dlayers,
input_layer=None,
dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate,
attention_dropout_rate=transformer_dec_attn_dropout_rate,
normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
pos_enc_layer_type=conformer_pos_enc_layer_type,
selfattention_layer_type=conformer_self_attn_layer_type,
activation_type=conformer_activation_type,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_dec_kernel_size, )
elif decoder_type == 'cnndecoder':
self.decoder = CNNDecoder(
emb_dim=adim,
odim=odim,
kernel_size=cnn_postnet_kernel_size,
dropout_rate=cnn_dec_dropout_rate,
resblock_kernel_sizes=cnn_postnet_resblock_kernel_sizes)
else:
raise ValueError(f"{decoder_type} is not supported.")
# define final projection
self.feat_out = nn.Linear(adim, odim * reduction_factor)
# define postnet
if decoder_type == 'cnndecoder':
self.postnet = CNNPostnet(
odim=odim,
kernel_size=cnn_postnet_kernel_size,
dropout_rate=cnn_postnet_dropout_rate,
resblock_kernel_sizes=cnn_postnet_resblock_kernel_sizes)
else:
self.postnet = (None if postnet_layers == 0 else Postnet(
idim=idim,
odim=odim,
n_layers=postnet_layers,
n_chans=postnet_chans,
n_filts=postnet_filts,
use_batch_norm=use_batch_norm,
dropout_rate=postnet_dropout_rate, ))
nn.initializer.set_global_initializer(None)
self._reset_parameters(
init_enc_alpha=init_enc_alpha,
init_dec_alpha=init_dec_alpha, )
def forward(
self,
text: paddle.Tensor,
text_lengths: paddle.Tensor,
speech: paddle.Tensor,
speech_lengths: paddle.Tensor,
durations: paddle.Tensor,
pitch: paddle.Tensor,
energy: paddle.Tensor,
tone_id: paddle.Tensor=None,
3 years ago
spk_emb: paddle.Tensor=None,
spk_id: paddle.Tensor=None
) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]:
"""Calculate forward propagation.
Args:
text(Tensor(int64)):
Batch of padded token ids (B, Tmax).
text_lengths(Tensor(int64)):
Batch of lengths of each input (B,).
speech(Tensor):
Batch of padded target features (B, Lmax, odim).
speech_lengths(Tensor(int64)):
Batch of the lengths of each target (B,).
durations(Tensor(int64)):
Batch of padded durations (B, Tmax).
pitch(Tensor):
Batch of padded token-averaged pitch (B, Tmax, 1).
energy(Tensor):
Batch of padded token-averaged energy (B, Tmax, 1).
tone_id(Tensor, optional(int64)):
Batch of padded tone ids (B, Tmax).
spk_emb(Tensor, optional):
Batch of speaker embeddings (B, spk_embed_dim).
spk_id(Tnesor, optional(int64)):
Batch of speaker ids (B,)
Returns:
"""
# input of embedding must be int64
xs = paddle.cast(text, 'int64')
ilens = paddle.cast(text_lengths, 'int64')
ds = paddle.cast(durations, 'int64')
olens = paddle.cast(speech_lengths, 'int64')
ys = speech
ps = pitch
es = energy
if spk_id is not None:
spk_id = paddle.cast(spk_id, 'int64')
if tone_id is not None:
tone_id = paddle.cast(tone_id, 'int64')
# forward propagation
before_outs, after_outs, d_outs, p_outs, e_outs, spk_logits = self._forward(
xs,
ilens,
olens,
ds,
ps,
es,
is_inference=False,
3 years ago
spk_emb=spk_emb,
spk_id=spk_id,
tone_id=tone_id)
# modify mod part of groundtruth
if self.reduction_factor > 1:
olens = olens - olens % self.reduction_factor
max_olen = max(olens)
ys = ys[:, :max_olen]
return before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits
def _forward(self,
xs: paddle.Tensor,
ilens: paddle.Tensor,
olens: paddle.Tensor=None,
ds: paddle.Tensor=None,
ps: paddle.Tensor=None,
es: paddle.Tensor=None,
is_inference: bool=False,
return_after_enc=False,
alpha: float=1.0,
3 years ago
spk_emb=None,
spk_id=None,
tone_id=None) -> Sequence[paddle.Tensor]:
# forward encoder
x_masks = self._source_mask(ilens)
# (B, Tmax, adim)
hs, _ = self.encoder(xs, x_masks)
if self.spk_num and self.enable_speaker_classifier and not is_inference:
hs_for_spk_cls = self.grad_reverse(hs)
spk_logits = self.speaker_classifier(hs_for_spk_cls, ilens)
else:
spk_logits = None
# integrate speaker embedding
if self.spk_embed_dim is not None:
3 years ago
# spk_emb has a higher priority than spk_id
if spk_emb is not None:
hs = self._integrate_with_spk_embed(hs, spk_emb)
elif spk_id is not None:
3 years ago
spk_emb = self.spk_embedding_table(spk_id)
hs = self._integrate_with_spk_embed(hs, spk_emb)
# integrate tone embedding
if self.tone_embed_dim is not None:
if tone_id is not None:
tone_embs = self.tone_embedding_table(tone_id)
hs = self._integrate_with_tone_embed(hs, tone_embs)
# forward duration predictor and variance predictors
d_masks = make_pad_mask(ilens)
if self.stop_gradient_from_pitch_predictor:
p_outs = self.pitch_predictor(hs.detach(), d_masks.unsqueeze(-1))
else:
p_outs = self.pitch_predictor(hs, d_masks.unsqueeze(-1))
if self.stop_gradient_from_energy_predictor:
e_outs = self.energy_predictor(hs.detach(), d_masks.unsqueeze(-1))
else:
e_outs = self.energy_predictor(hs, d_masks.unsqueeze(-1))
if is_inference:
# (B, Tmax)
if ds is not None:
d_outs = ds
else:
d_outs = self.duration_predictor.inference(hs, d_masks)
if ps is not None:
p_outs = ps
if es is not None:
e_outs = es
# use prediction in inference
# (B, Tmax, 1)
p_embs = self.pitch_embed(p_outs.transpose((0, 2, 1))).transpose(
(0, 2, 1))
e_embs = self.energy_embed(e_outs.transpose((0, 2, 1))).transpose(
(0, 2, 1))
hs = hs + e_embs + p_embs
# (B, Lmax, adim)
hs = self.length_regulator(hs, d_outs, alpha, is_inference=True)
else:
d_outs = self.duration_predictor(hs, d_masks)
# use groundtruth in training
p_embs = self.pitch_embed(ps.transpose((0, 2, 1))).transpose(
(0, 2, 1))
e_embs = self.energy_embed(es.transpose((0, 2, 1))).transpose(
(0, 2, 1))
hs = hs + e_embs + p_embs
# (B, Lmax, adim)
hs = self.length_regulator(hs, ds, is_inference=False)
# forward decoder
if olens is not None and not is_inference:
if self.reduction_factor > 1:
olens_in = paddle.to_tensor(
[olen // self.reduction_factor for olen in olens.numpy()])
else:
olens_in = olens
# (B, 1, T)
h_masks = self._source_mask(olens_in)
else:
h_masks = None
if return_after_enc:
return hs, h_masks
if self.decoder_type == 'cnndecoder':
# remove output masks for dygraph to static graph
zs = self.decoder(hs, h_masks)
before_outs = zs
else:
# (B, Lmax, adim)
zs, _ = self.decoder(hs, h_masks)
# (B, Lmax, odim)
before_outs = self.feat_out(zs).reshape(
(paddle.shape(zs)[0], -1, self.odim))
# postnet -> (B, Lmax//r * r, odim)
if self.postnet is None:
after_outs = before_outs
else:
after_outs = before_outs + self.postnet(
before_outs.transpose((0, 2, 1))).transpose((0, 2, 1))
return before_outs, after_outs, d_outs, p_outs, e_outs, spk_logits
def encoder_infer(
self,
text: paddle.Tensor,
alpha: float=1.0,
spk_emb=None,
spk_id=None,
tone_id=None,
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
# input of embedding must be int64
x = paddle.cast(text, 'int64')
# setup batch axis
ilens = paddle.shape(x)[0]
xs = x.unsqueeze(0)
if spk_emb is not None:
spk_emb = spk_emb.unsqueeze(0)
if tone_id is not None:
tone_id = tone_id.unsqueeze(0)
# (1, L, odim)
# use *_ to avoid bug in dygraph to static graph
hs, *_ = self._forward(
xs,
ilens,
is_inference=True,
return_after_enc=True,
alpha=alpha,
spk_emb=spk_emb,
spk_id=spk_id,
tone_id=tone_id)
return hs
def inference(
self,
text: paddle.Tensor,
durations: paddle.Tensor=None,
pitch: paddle.Tensor=None,
energy: paddle.Tensor=None,
alpha: float=1.0,
use_teacher_forcing: bool=False,
3 years ago
spk_emb=None,
spk_id=None,
tone_id=None,
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""Generate the sequence of features given the sequences of characters.
Args:
text(Tensor(int64)):
Input sequence of characters (T,).
durations(Tensor, optional (int64)):
Groundtruth of duration (T,).
pitch(Tensor, optional):
Groundtruth of token-averaged pitch (T, 1).
energy(Tensor, optional):
Groundtruth of token-averaged energy (T, 1).
alpha(float, optional):
Alpha to control the speed.
use_teacher_forcing(bool, optional):
Whether to use teacher forcing.
If true, groundtruth of duration, pitch and energy will be used.
spk_emb(Tensor, optional, optional):
peaker embedding vector (spk_embed_dim,). (Default value = None)
spk_id(Tensor, optional(int64), optional):
spk ids (1,). (Default value = None)
tone_id(Tensor, optional(int64), optional):
tone ids (T,). (Default value = None)
Returns:
"""
# input of embedding must be int64
x = paddle.cast(text, 'int64')
3 years ago
d, p, e = durations, pitch, energy
# setup batch axis
ilens = paddle.shape(x)[0]
xs = x.unsqueeze(0)
3 years ago
if spk_emb is not None:
spk_emb = spk_emb.unsqueeze(0)
3 years ago
if tone_id is not None:
tone_id = tone_id.unsqueeze(0)
if use_teacher_forcing:
# use groundtruth of duration, pitch, and energy
ds = d.unsqueeze(0) if d is not None else None
ps = p.unsqueeze(0) if p is not None else None
es = e.unsqueeze(0) if e is not None else None
# (1, L, odim)
_, outs, d_outs, p_outs, e_outs, _ = self._forward(
xs,
ilens,
ds=ds,
ps=ps,
es=es,
3 years ago
spk_emb=spk_emb,
spk_id=spk_id,
tone_id=tone_id,
is_inference=True)
else:
# (1, L, odim)
_, outs, d_outs, p_outs, e_outs, _ = self._forward(
xs,
ilens,
is_inference=True,
alpha=alpha,
3 years ago
spk_emb=spk_emb,
spk_id=spk_id,
tone_id=tone_id)
3 years ago
return outs[0], d_outs[0], p_outs[0], e_outs[0]
3 years ago
def _integrate_with_spk_embed(self, hs, spk_emb):
"""Integrate speaker embedding with hidden states.
Args:
hs(Tensor):
Batch of hidden state sequences (B, Tmax, adim).
spk_emb(Tensor):
Batch of speaker embeddings (B, spk_embed_dim).
Returns:
"""
if self.spk_embed_integration_type == "add":
# apply projection and then add to hidden states
3 years ago
spk_emb = self.spk_projection(F.normalize(spk_emb))
hs = hs + spk_emb.unsqueeze(1)
elif self.spk_embed_integration_type == "concat":
# concat hidden states with spk embeds and then apply projection
3 years ago
spk_emb = F.normalize(spk_emb).unsqueeze(1).expand(
shape=[-1, paddle.shape(hs)[1], -1])
3 years ago
hs = self.spk_projection(paddle.concat([hs, spk_emb], axis=-1))
else:
raise NotImplementedError("support only add or concat.")
return hs
def _integrate_with_tone_embed(self, hs, tone_embs):
"""Integrate speaker embedding with hidden states.
Args:
hs(Tensor):
Batch of hidden state sequences (B, Tmax, adim).
tone_embs(Tensor):
Batch of speaker embeddings (B, Tmax, tone_embed_dim).
Returns:
"""
if self.tone_embed_integration_type == "add":
# apply projection and then add to hidden states
tone_embs = self.tone_projection(F.normalize(tone_embs))
hs = hs + tone_embs
elif self.tone_embed_integration_type == "concat":
# concat hidden states with tone embeds and then apply projection
tone_embs = F.normalize(tone_embs).expand(
shape=[-1, hs.shape[1], -1])
hs = self.tone_projection(paddle.concat([hs, tone_embs], axis=-1))
else:
raise NotImplementedError("support only add or concat.")
return hs
def _source_mask(self, ilens: paddle.Tensor) -> paddle.Tensor:
"""Make masks for self-attention.
Args:
ilens(Tensor):
Batch of lengths (B,).
Returns:
Tensor:
Mask tensor for self-attention. dtype=paddle.bool
Examples:
>>> ilens = [5, 3]
>>> self._source_mask(ilens)
tensor([[[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0]]]) bool
"""
x_masks = make_non_pad_mask(ilens)
return x_masks.unsqueeze(-2)
def _reset_parameters(self, init_enc_alpha: float, init_dec_alpha: float):
# initialize alpha in scaled positional encoding
if self.encoder_type == "transformer" and self.use_scaled_pos_enc:
init_enc_alpha = paddle.to_tensor(init_enc_alpha)
self.encoder.embed[-1].alpha = paddle.create_parameter(
shape=init_enc_alpha.shape,
dtype=str(init_enc_alpha.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(
init_enc_alpha))
if self.decoder_type == "transformer" and self.use_scaled_pos_enc:
init_dec_alpha = paddle.to_tensor(init_dec_alpha)
self.decoder.embed[-1].alpha = paddle.create_parameter(
shape=init_dec_alpha.shape,
dtype=str(init_dec_alpha.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(
init_dec_alpha))
class FastSpeech2Inference(nn.Layer):
def __init__(self, normalizer, model):
super().__init__()
self.normalizer = normalizer
self.acoustic_model = model
3 years ago
def forward(self, text, spk_id=None, spk_emb=None):
3 years ago
normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference(
3 years ago
text, spk_id=spk_id, spk_emb=spk_emb)
logmel = self.normalizer.inverse(normalized_mel)
return logmel
3 years ago
class StyleFastSpeech2Inference(FastSpeech2Inference):
def __init__(self,
normalizer,
model,
pitch_stats_path=None,
energy_stats_path=None):
super().__init__(normalizer, model)
if pitch_stats_path:
pitch_mean, pitch_std = np.load(pitch_stats_path)
self.pitch_mean = paddle.to_tensor(pitch_mean)
self.pitch_std = paddle.to_tensor(pitch_std)
if energy_stats_path:
energy_mean, energy_std = np.load(energy_stats_path)
self.energy_mean = paddle.to_tensor(energy_mean)
self.energy_std = paddle.to_tensor(energy_std)
def denorm(self, data, mean, std):
return data * std + mean
def norm(self, data, mean, std):
return (data - mean) / std
def forward(self,
text: paddle.Tensor,
durations: Union[paddle.Tensor, np.ndarray]=None,
durations_scale: Union[int, float]=None,
durations_bias: Union[int, float]=None,
pitch: Union[paddle.Tensor, np.ndarray]=None,
pitch_scale: Union[int, float]=None,
pitch_bias: Union[int, float]=None,
energy: Union[paddle.Tensor, np.ndarray]=None,
energy_scale: Union[int, float]=None,
energy_bias: Union[int, float]=None,
robot: bool=False,
spk_emb=None,
spk_id=None):
3 years ago
"""
Args:
text(Tensor(int64)):
Input sequence of characters (T,).
durations(paddle.Tensor/np.ndarray, optional (int64)):
Groundtruth of duration (T,), this will overwrite the set of durations_scale and durations_bias
durations_scale(int/float, optional):
durations_bias(int/float, optional):
pitch(paddle.Tensor/np.ndarray, optional):
Groundtruth of token-averaged pitch (T, 1), this will overwrite the set of pitch_scale and pitch_bias
pitch_scale(int/float, optional):
In denormed HZ domain.
pitch_bias(int/float, optional):
In denormed HZ domain.
energy(paddle.Tensor/np.ndarray, optional):
Groundtruth of token-averaged energy (T, 1), this will overwrite the set of energy_scale and energy_bias
energy_scale(int/float, optional):
In denormed domain.
energy_bias(int/float, optional):
In denormed domain.
robot(bool) (Default value = False):
spk_emb(Default value = None):
spk_id(Default value = None):
Returns:
Tensor: logmel
3 years ago
"""
normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference(
text,
durations=None,
pitch=None,
energy=None,
spk_emb=spk_emb,
spk_id=spk_id)
3 years ago
# priority: groundtruth > scale/bias > previous output
# set durations
if isinstance(durations, np.ndarray):
durations = paddle.to_tensor(durations)
elif isinstance(durations, paddle.Tensor):
durations = durations
elif durations_scale or durations_bias:
durations_scale = durations_scale if durations_scale is not None else 1
durations_bias = durations_bias if durations_bias is not None else 0
durations = durations_scale * d_outs + durations_bias
else:
durations = d_outs
if robot:
# set normed pitch to zeros have the same effect with set denormd ones to mean
pitch = paddle.zeros(p_outs.shape)
# set pitch, can overwrite robot set
if isinstance(pitch, np.ndarray):
pitch = paddle.to_tensor(pitch)
elif isinstance(pitch, paddle.Tensor):
pitch = pitch
elif pitch_scale or pitch_bias:
pitch_scale = pitch_scale if pitch_scale is not None else 1
pitch_bias = pitch_bias if pitch_bias is not None else 0
p_Hz = paddle.exp(
self.denorm(p_outs, self.pitch_mean, self.pitch_std))
p_HZ = pitch_scale * p_Hz + pitch_bias
pitch = self.norm(paddle.log(p_HZ), self.pitch_mean, self.pitch_std)
else:
pitch = p_outs
# set energy
if isinstance(energy, np.ndarray):
energy = paddle.to_tensor(energy)
elif isinstance(energy, paddle.Tensor):
energy = energy
elif energy_scale or energy_bias:
energy_scale = energy_scale if energy_scale is not None else 1
energy_bias = energy_bias if energy_bias is not None else 0
e_dnorm = self.denorm(e_outs, self.energy_mean, self.energy_std)
e_dnorm = energy_scale * e_dnorm + energy_bias
energy = self.norm(e_dnorm, self.energy_mean, self.energy_std)
else:
energy = e_outs
normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference(
text,
durations=durations,
pitch=pitch,
energy=energy,
use_teacher_forcing=True,
spk_emb=spk_emb,
spk_id=spk_id)
3 years ago
logmel = self.normalizer.inverse(normalized_mel)
return logmel
class FastSpeech2Loss(nn.Layer):
"""Loss function module for FastSpeech2."""
def __init__(self, use_masking: bool=True,
use_weighted_masking: bool=False):
"""Initialize feed-forward Transformer loss module.
Args:
use_masking (bool):
Whether to apply masking for padded part in loss calculation.
use_weighted_masking (bool):
Whether to weighted masking in loss calculation.
"""
assert check_argument_types()
super().__init__()
assert (use_masking != use_weighted_masking) or not use_masking
self.use_masking = use_masking
self.use_weighted_masking = use_weighted_masking
# define criterions
reduction = "none" if self.use_weighted_masking else "mean"
self.l1_criterion = nn.L1Loss(reduction=reduction)
self.mse_criterion = nn.MSELoss(reduction=reduction)
self.duration_criterion = DurationPredictorLoss(reduction=reduction)
self.ce_criterion = nn.CrossEntropyLoss()
def forward(
self,
after_outs: paddle.Tensor,
before_outs: paddle.Tensor,
d_outs: paddle.Tensor,
p_outs: paddle.Tensor,
e_outs: paddle.Tensor,
ys: paddle.Tensor,
ds: paddle.Tensor,
ps: paddle.Tensor,
es: paddle.Tensor,
ilens: paddle.Tensor,
olens: paddle.Tensor,
spk_logits: paddle.Tensor=None,
spk_ids: paddle.Tensor=None,
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor,
paddle.Tensor, ]:
"""Calculate forward propagation.
Args:
after_outs(Tensor):
Batch of outputs after postnets (B, Lmax, odim).
before_outs(Tensor):
Batch of outputs before postnets (B, Lmax, odim).
d_outs(Tensor):
Batch of outputs of duration predictor (B, Tmax).
p_outs(Tensor):
Batch of outputs of pitch predictor (B, Tmax, 1).
e_outs(Tensor):
Batch of outputs of energy predictor (B, Tmax, 1).
ys(Tensor):
Batch of target features (B, Lmax, odim).
ds(Tensor):
Batch of durations (B, Tmax).
ps(Tensor):
Batch of target token-averaged pitch (B, Tmax, 1).
es(Tensor):
Batch of target token-averaged energy (B, Tmax, 1).
ilens(Tensor):
Batch of the lengths of each input (B,).
olens(Tensor):
Batch of the lengths of each target (B,).
spk_logits(Option[Tensor]):
Batch of outputs after speaker classifier (B, Lmax, num_spk)
spk_ids(Option[Tensor]):
Batch of target spk_id (B,)
Returns:
"""
speaker_loss = 0.0
# apply mask to remove padded part
if self.use_masking:
out_masks = make_non_pad_mask(olens).unsqueeze(-1)
before_outs = before_outs.masked_select(
out_masks.broadcast_to(before_outs.shape))
if after_outs is not None:
after_outs = after_outs.masked_select(
out_masks.broadcast_to(after_outs.shape))
ys = ys.masked_select(out_masks.broadcast_to(ys.shape))
duration_masks = make_non_pad_mask(ilens)
d_outs = d_outs.masked_select(
duration_masks.broadcast_to(d_outs.shape))
ds = ds.masked_select(duration_masks.broadcast_to(ds.shape))
pitch_masks = make_non_pad_mask(ilens).unsqueeze(-1)
p_outs = p_outs.masked_select(
pitch_masks.broadcast_to(p_outs.shape))
e_outs = e_outs.masked_select(
pitch_masks.broadcast_to(e_outs.shape))
ps = ps.masked_select(pitch_masks.broadcast_to(ps.shape))
es = es.masked_select(pitch_masks.broadcast_to(es.shape))
if spk_logits is not None and spk_ids is not None:
batch_size = spk_ids.shape[0]
spk_ids = paddle.repeat_interleave(spk_ids, spk_logits.shape[1],
None)
spk_logits = paddle.reshape(spk_logits,
[-1, spk_logits.shape[-1]])
mask_index = spk_logits.abs().sum(axis=1) != 0
spk_ids = spk_ids[mask_index]
spk_logits = spk_logits[mask_index]
# calculate loss
l1_loss = self.l1_criterion(before_outs, ys)
if after_outs is not None:
l1_loss += self.l1_criterion(after_outs, ys)
duration_loss = self.duration_criterion(d_outs, ds)
pitch_loss = self.mse_criterion(p_outs, ps)
energy_loss = self.mse_criterion(e_outs, es)
if spk_logits is not None and spk_ids is not None:
speaker_loss = self.ce_criterion(spk_logits, spk_ids) / batch_size
# make weighted mask and apply it
if self.use_weighted_masking:
out_masks = make_non_pad_mask(olens).unsqueeze(-1)
out_weights = out_masks.cast(dtype=paddle.float32) / out_masks.cast(
dtype=paddle.float32).sum(
axis=1, keepdim=True)
out_weights /= ys.shape[0] * ys.shape[2]
duration_masks = make_non_pad_mask(ilens)
duration_weights = (duration_masks.cast(dtype=paddle.float32) /
duration_masks.cast(dtype=paddle.float32).sum(
axis=1, keepdim=True))
duration_weights /= ds.shape[0]
# apply weight
l1_loss = l1_loss.multiply(out_weights)
l1_loss = l1_loss.masked_select(
out_masks.broadcast_to(l1_loss.shape)).sum()
duration_loss = (duration_loss.multiply(duration_weights)
.masked_select(duration_masks).sum())
pitch_masks = duration_masks.unsqueeze(-1)
pitch_weights = duration_weights.unsqueeze(-1)
pitch_loss = pitch_loss.multiply(pitch_weights)
pitch_loss = pitch_loss.masked_select(
pitch_masks.broadcast_to(pitch_loss.shape)).sum()
energy_loss = energy_loss.multiply(pitch_weights)
energy_loss = energy_loss.masked_select(
pitch_masks.broadcast_to(energy_loss.shape)).sum()
return l1_loss, duration_loss, pitch_loss, energy_loss, speaker_loss