You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
929 lines
37 KiB
929 lines
37 KiB
4 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""U2 ASR Model
|
||
|
Unified Streaming and Non-streaming Two-pass End-to-end Model for Speech Recognition
|
||
|
(https://arxiv.org/pdf/2012.05481.pdf)
|
||
|
"""
|
||
|
import sys
|
||
|
import time
|
||
|
from collections import defaultdict
|
||
|
from typing import Dict
|
||
|
from typing import List
|
||
|
from typing import Optional
|
||
|
from typing import Tuple
|
||
|
|
||
|
import paddle
|
||
|
from paddle import jit
|
||
|
from paddle import nn
|
||
|
from yacs.config import CfgNode
|
||
|
|
||
|
from deepspeech.frontend.utility import IGNORE_ID
|
||
|
from deepspeech.frontend.utility import load_cmvn
|
||
|
from deepspeech.modules.cmvn import GlobalCMVN
|
||
|
from deepspeech.modules.ctc import CTCDecoder
|
||
|
from deepspeech.modules.decoder import TransformerDecoder
|
||
|
from deepspeech.modules.encoder import ConformerEncoder
|
||
|
from deepspeech.modules.encoder import TransformerEncoder
|
||
|
from deepspeech.modules.loss import LabelSmoothingLoss
|
||
|
from deepspeech.modules.mask import make_pad_mask
|
||
|
from deepspeech.modules.mask import mask_finished_preds
|
||
|
from deepspeech.modules.mask import mask_finished_scores
|
||
|
from deepspeech.modules.mask import subsequent_mask
|
||
|
from deepspeech.utils import checkpoint
|
||
|
from deepspeech.utils import layer_tools
|
||
|
from deepspeech.utils.ctc_utils import remove_duplicates_and_blank
|
||
|
from deepspeech.utils.log import Log
|
||
|
from deepspeech.utils.tensor_utils import add_sos_eos
|
||
|
from deepspeech.utils.tensor_utils import pad_sequence
|
||
|
from deepspeech.utils.tensor_utils import th_accuracy
|
||
|
from deepspeech.utils.utility import log_add
|
||
|
|
||
|
__all__ = ["U2Model", "U2InferModel"]
|
||
|
|
||
|
logger = Log(__name__).getlog()
|
||
|
|
||
|
|
||
|
class U2BaseModel(nn.Module):
|
||
|
"""CTC-Attention hybrid Encoder-Decoder model"""
|
||
|
|
||
|
@classmethod
|
||
|
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
|
||
|
# network architecture
|
||
|
default = CfgNode()
|
||
|
# allow add new item when merge_with_file
|
||
|
default.cmvn_file = ""
|
||
|
default.cmvn_file_type = "json"
|
||
|
default.input_dim = 0
|
||
|
default.output_dim = 0
|
||
|
# encoder related
|
||
|
default.encoder = 'transformer'
|
||
|
default.encoder_conf = CfgNode(
|
||
|
dict(
|
||
|
output_size=256, # dimension of attention
|
||
|
attention_heads=4,
|
||
|
linear_units=2048, # the number of units of position-wise feed forward
|
||
|
num_blocks=12, # the number of encoder blocks
|
||
|
dropout_rate=0.1,
|
||
|
positional_dropout_rate=0.1,
|
||
|
attention_dropout_rate=0.0,
|
||
|
input_layer='conv2d', # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||
|
normalize_before=True,
|
||
|
# use_cnn_module=True,
|
||
|
# cnn_module_kernel=15,
|
||
|
# activation_type='swish',
|
||
|
# pos_enc_layer_type='rel_pos',
|
||
|
# selfattention_layer_type='rel_selfattn',
|
||
|
))
|
||
|
# decoder related
|
||
|
default.decoder = 'transformer'
|
||
|
default.decoder_conf = CfgNode(
|
||
|
dict(
|
||
|
attention_heads=4,
|
||
|
linear_units=2048,
|
||
|
num_blocks=6,
|
||
|
dropout_rate=0.1,
|
||
|
positional_dropout_rate=0.1,
|
||
|
self_attention_dropout_rate=0.0,
|
||
|
src_attention_dropout_rate=0.0, ))
|
||
|
# hybrid CTC/attention
|
||
|
default.model_conf = CfgNode(
|
||
|
dict(
|
||
|
ctc_weight=0.3,
|
||
|
lsm_weight=0.1, # label smoothing option
|
||
|
length_normalized_loss=False, ))
|
||
|
|
||
|
if config is not None:
|
||
|
config.merge_from_other_cfg(default)
|
||
|
return default
|
||
|
|
||
|
def __init__(self,
|
||
|
vocab_size: int,
|
||
|
encoder: TransformerEncoder,
|
||
|
decoder: TransformerDecoder,
|
||
|
ctc: CTCDecoder,
|
||
|
ctc_weight: float=0.5,
|
||
|
ignore_id: int=IGNORE_ID,
|
||
|
lsm_weight: float=0.0,
|
||
|
length_normalized_loss: bool=False):
|
||
|
assert 0.0 <= ctc_weight <= 1.0, ctc_weight
|
||
|
|
||
|
super().__init__()
|
||
|
# note that eos is the same as sos (equivalent ID)
|
||
|
self.sos = vocab_size - 1
|
||
|
self.eos = vocab_size - 1
|
||
|
self.vocab_size = vocab_size
|
||
|
self.ignore_id = ignore_id
|
||
|
self.ctc_weight = ctc_weight
|
||
|
|
||
|
self.encoder = encoder
|
||
|
self.decoder = decoder
|
||
|
self.ctc = ctc
|
||
|
self.criterion_att = LabelSmoothingLoss(
|
||
|
size=vocab_size,
|
||
|
padding_idx=ignore_id,
|
||
|
smoothing=lsm_weight,
|
||
|
normalize_length=length_normalized_loss, )
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
speech: paddle.Tensor,
|
||
|
speech_lengths: paddle.Tensor,
|
||
|
text: paddle.Tensor,
|
||
|
text_lengths: paddle.Tensor,
|
||
|
) -> Tuple[Optional[paddle.Tensor], Optional[paddle.Tensor], Optional[
|
||
|
paddle.Tensor]]:
|
||
|
"""Frontend + Encoder + Decoder + Calc loss
|
||
|
Args:
|
||
|
speech: (Batch, Length, ...)
|
||
|
speech_lengths: (Batch, )
|
||
|
text: (Batch, Length)
|
||
|
text_lengths: (Batch,)
|
||
|
Returns:
|
||
|
total_loss, attention_loss, ctc_loss
|
||
|
"""
|
||
|
assert text_lengths.dim() == 1, text_lengths.shape
|
||
|
# Check that batch_size is unified
|
||
|
assert (speech.shape[0] == speech_lengths.shape[0] == text.shape[0] ==
|
||
|
text_lengths.shape[0]), (speech.shape, speech_lengths.shape,
|
||
|
text.shape, text_lengths.shape)
|
||
|
# 1. Encoder
|
||
|
start = time.time()
|
||
|
encoder_out, encoder_mask = self.encoder(speech, speech_lengths)
|
||
|
encoder_time = time.time() - start
|
||
|
#logger.debug(f"encoder time: {encoder_time}")
|
||
|
#TODO(Hui Zhang): sum not support bool type
|
||
|
#encoder_out_lens = encoder_mask.squeeze(1).sum(1) #[B, 1, T] -> [B]
|
||
|
encoder_out_lens = encoder_mask.squeeze(1).cast(paddle.int64).sum(
|
||
|
1) #[B, 1, T] -> [B]
|
||
|
|
||
|
# 2a. Attention-decoder branch
|
||
|
loss_att = None
|
||
|
if self.ctc_weight != 1.0:
|
||
|
start = time.time()
|
||
|
loss_att, acc_att = self._calc_att_loss(encoder_out, encoder_mask,
|
||
|
text, text_lengths)
|
||
|
decoder_time = time.time() - start
|
||
|
#logger.debug(f"decoder time: {decoder_time}")
|
||
|
|
||
|
# 2b. CTC branch
|
||
|
loss_ctc = None
|
||
|
if self.ctc_weight != 0.0:
|
||
|
start = time.time()
|
||
|
loss_ctc = self.ctc(encoder_out, encoder_out_lens, text,
|
||
|
text_lengths)
|
||
|
ctc_time = time.time() - start
|
||
|
#logger.debug(f"ctc time: {ctc_time}")
|
||
|
|
||
|
if loss_ctc is None:
|
||
|
loss = loss_att
|
||
|
elif loss_att is None:
|
||
|
loss = loss_ctc
|
||
|
else:
|
||
|
loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att
|
||
|
return loss, loss_att, loss_ctc
|
||
|
|
||
|
def _calc_att_loss(
|
||
|
self,
|
||
|
encoder_out: paddle.Tensor,
|
||
|
encoder_mask: paddle.Tensor,
|
||
|
ys_pad: paddle.Tensor,
|
||
|
ys_pad_lens: paddle.Tensor, ) -> Tuple[paddle.Tensor, float]:
|
||
|
"""Calc attention loss.
|
||
|
|
||
|
Args:
|
||
|
encoder_out (paddle.Tensor): [B, Tmax, D]
|
||
|
encoder_mask (paddle.Tensor): [B, 1, Tmax]
|
||
|
ys_pad (paddle.Tensor): [B, Umax]
|
||
|
ys_pad_lens (paddle.Tensor): [B]
|
||
|
|
||
|
Returns:
|
||
|
Tuple[paddle.Tensor, float]: attention_loss, accuracy rate
|
||
|
"""
|
||
|
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos,
|
||
|
self.ignore_id)
|
||
|
ys_in_lens = ys_pad_lens + 1
|
||
|
|
||
|
# 1. Forward decoder
|
||
|
decoder_out, _ = self.decoder(encoder_out, encoder_mask, ys_in_pad,
|
||
|
ys_in_lens)
|
||
|
|
||
|
# 2. Compute attention loss
|
||
|
loss_att = self.criterion_att(decoder_out, ys_out_pad)
|
||
|
acc_att = th_accuracy(
|
||
|
decoder_out.view(-1, self.vocab_size),
|
||
|
ys_out_pad,
|
||
|
ignore_label=self.ignore_id, )
|
||
|
return loss_att, acc_att
|
||
|
|
||
|
def _forward_encoder(
|
||
|
self,
|
||
|
speech: paddle.Tensor,
|
||
|
speech_lengths: paddle.Tensor,
|
||
|
decoding_chunk_size: int=-1,
|
||
|
num_decoding_left_chunks: int=-1,
|
||
|
simulate_streaming: bool=False,
|
||
|
) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
||
|
"""Encoder pass.
|
||
|
|
||
|
Args:
|
||
|
speech (paddle.Tensor): [B, Tmax, D]
|
||
|
speech_lengths (paddle.Tensor): [B]
|
||
|
decoding_chunk_size (int, optional): chuck size. Defaults to -1.
|
||
|
num_decoding_left_chunks (int, optional): nums chunks. Defaults to -1.
|
||
|
simulate_streaming (bool, optional): streaming or not. Defaults to False.
|
||
|
|
||
|
Returns:
|
||
|
Tuple[paddle.Tensor, paddle.Tensor]:
|
||
|
encoder hiddens (B, Tmax, D),
|
||
|
encoder hiddens mask (B, 1, Tmax).
|
||
|
"""
|
||
|
# Let's assume B = batch_size
|
||
|
# 1. Encoder
|
||
|
if simulate_streaming and decoding_chunk_size > 0:
|
||
|
encoder_out, encoder_mask = self.encoder.forward_chunk_by_chunk(
|
||
|
speech,
|
||
|
decoding_chunk_size=decoding_chunk_size,
|
||
|
num_decoding_left_chunks=num_decoding_left_chunks
|
||
|
) # (B, maxlen, encoder_dim)
|
||
|
else:
|
||
|
encoder_out, encoder_mask = self.encoder(
|
||
|
speech,
|
||
|
speech_lengths,
|
||
|
decoding_chunk_size=decoding_chunk_size,
|
||
|
num_decoding_left_chunks=num_decoding_left_chunks
|
||
|
) # (B, maxlen, encoder_dim)
|
||
|
return encoder_out, encoder_mask
|
||
|
|
||
|
def recognize(
|
||
|
self,
|
||
|
speech: paddle.Tensor,
|
||
|
speech_lengths: paddle.Tensor,
|
||
|
beam_size: int=10,
|
||
|
decoding_chunk_size: int=-1,
|
||
|
num_decoding_left_chunks: int=-1,
|
||
|
simulate_streaming: bool=False, ) -> paddle.Tensor:
|
||
|
""" Apply beam search on attention decoder
|
||
|
Args:
|
||
|
speech (paddle.Tensor): (batch, max_len, feat_dim)
|
||
|
speech_length (paddle.Tensor): (batch, )
|
||
|
beam_size (int): beam size for beam search
|
||
|
decoding_chunk_size (int): decoding chunk for dynamic chunk
|
||
|
trained model.
|
||
|
<0: for decoding, use full chunk.
|
||
|
>0: for decoding, use fixed chunk size as set.
|
||
|
0: used for training, it's prohibited here
|
||
|
simulate_streaming (bool): whether do encoder forward in a
|
||
|
streaming fashion
|
||
|
Returns:
|
||
|
paddle.Tensor: decoding result, (batch, max_result_len)
|
||
|
"""
|
||
|
assert speech.shape[0] == speech_lengths.shape[0]
|
||
|
assert decoding_chunk_size != 0
|
||
|
device = speech.place
|
||
|
batch_size = speech.shape[0]
|
||
|
|
||
|
# Let's assume B = batch_size and N = beam_size
|
||
|
# 1. Encoder
|
||
|
encoder_out, encoder_mask = self._forward_encoder(
|
||
|
speech, speech_lengths, decoding_chunk_size,
|
||
|
num_decoding_left_chunks,
|
||
|
simulate_streaming) # (B, maxlen, encoder_dim)
|
||
|
maxlen = encoder_out.size(1)
|
||
|
encoder_dim = encoder_out.size(2)
|
||
|
running_size = batch_size * beam_size
|
||
|
encoder_out = encoder_out.unsqueeze(1).repeat(1, beam_size, 1, 1).view(
|
||
|
running_size, maxlen, encoder_dim) # (B*N, maxlen, encoder_dim)
|
||
|
encoder_mask = encoder_mask.unsqueeze(1).repeat(
|
||
|
1, beam_size, 1, 1).view(running_size, 1,
|
||
|
maxlen) # (B*N, 1, max_len)
|
||
|
|
||
|
hyps = paddle.ones(
|
||
|
[running_size, 1], dtype=paddle.long).fill_(self.sos) # (B*N, 1)
|
||
|
# log scale score
|
||
|
scores = paddle.to_tensor(
|
||
|
[0.0] + [-float('inf')] * (beam_size - 1), dtype=paddle.float)
|
||
|
scores = scores.to(device).repeat(batch_size).unsqueeze(1).to(
|
||
|
device) # (B*N, 1)
|
||
|
end_flag = paddle.zeros_like(scores, dtype=paddle.bool) # (B*N, 1)
|
||
|
cache: Optional[List[paddle.Tensor]] = None
|
||
|
# 2. Decoder forward step by step
|
||
|
for i in range(1, maxlen + 1):
|
||
|
# Stop if all batch and all beam produce eos
|
||
|
# TODO(Hui Zhang): if end_flag.sum() == running_size:
|
||
|
if end_flag.cast(paddle.int64).sum() == running_size:
|
||
|
break
|
||
|
|
||
|
# 2.1 Forward decoder step
|
||
|
hyps_mask = subsequent_mask(i).unsqueeze(0).repeat(
|
||
|
running_size, 1, 1).to(device) # (B*N, i, i)
|
||
|
# logp: (B*N, vocab)
|
||
|
logp, cache = self.decoder.forward_one_step(
|
||
|
encoder_out, encoder_mask, hyps, hyps_mask, cache)
|
||
|
|
||
|
# 2.2 First beam prune: select topk best prob at current time
|
||
|
top_k_logp, top_k_index = logp.topk(beam_size) # (B*N, N)
|
||
|
top_k_logp = mask_finished_scores(top_k_logp, end_flag)
|
||
|
top_k_index = mask_finished_preds(top_k_index, end_flag, self.eos)
|
||
|
|
||
|
# 2.3 Seconde beam prune: select topk score with history
|
||
|
scores = scores + top_k_logp # (B*N, N), broadcast add
|
||
|
scores = scores.view(batch_size, beam_size * beam_size) # (B, N*N)
|
||
|
scores, offset_k_index = scores.topk(k=beam_size) # (B, N)
|
||
|
scores = scores.view(-1, 1) # (B*N, 1)
|
||
|
|
||
|
# 2.4. Compute base index in top_k_index,
|
||
|
# regard top_k_index as (B*N*N),regard offset_k_index as (B*N),
|
||
|
# then find offset_k_index in top_k_index
|
||
|
base_k_index = paddle.arange(batch_size).view(-1, 1).repeat(
|
||
|
1, beam_size) # (B, N)
|
||
|
base_k_index = base_k_index * beam_size * beam_size
|
||
|
best_k_index = base_k_index.view(-1) + offset_k_index.view(
|
||
|
-1) # (B*N)
|
||
|
|
||
|
# 2.5 Update best hyps
|
||
|
best_k_pred = paddle.index_select(
|
||
|
top_k_index.view(-1), index=best_k_index, axis=0) # (B*N)
|
||
|
best_hyps_index = best_k_index // beam_size
|
||
|
last_best_k_hyps = paddle.index_select(
|
||
|
hyps, index=best_hyps_index, axis=0) # (B*N, i)
|
||
|
hyps = paddle.cat(
|
||
|
(last_best_k_hyps, best_k_pred.view(-1, 1)),
|
||
|
dim=1) # (B*N, i+1)
|
||
|
|
||
|
# 2.6 Update end flag
|
||
|
end_flag = paddle.eq(hyps[:, -1], self.eos).view(-1, 1)
|
||
|
|
||
|
# 3. Select best of best
|
||
|
scores = scores.view(batch_size, beam_size)
|
||
|
# TODO: length normalization
|
||
|
best_index = paddle.argmax(scores, axis=-1).long() # (B)
|
||
|
best_hyps_index = best_index + paddle.arange(
|
||
|
batch_size, dtype=paddle.long) * beam_size
|
||
|
best_hyps = paddle.index_select(hyps, index=best_hyps_index, axis=0)
|
||
|
best_hyps = best_hyps[:, 1:]
|
||
|
return best_hyps
|
||
|
|
||
|
def ctc_greedy_search(
|
||
|
self,
|
||
|
speech: paddle.Tensor,
|
||
|
speech_lengths: paddle.Tensor,
|
||
|
decoding_chunk_size: int=-1,
|
||
|
num_decoding_left_chunks: int=-1,
|
||
|
simulate_streaming: bool=False, ) -> List[List[int]]:
|
||
|
""" Apply CTC greedy search
|
||
|
Args:
|
||
|
speech (paddle.Tensor): (batch, max_len, feat_dim)
|
||
|
speech_length (paddle.Tensor): (batch, )
|
||
|
beam_size (int): beam size for beam search
|
||
|
decoding_chunk_size (int): decoding chunk for dynamic chunk
|
||
|
trained model.
|
||
|
<0: for decoding, use full chunk.
|
||
|
>0: for decoding, use fixed chunk size as set.
|
||
|
0: used for training, it's prohibited here
|
||
|
simulate_streaming (bool): whether do encoder forward in a
|
||
|
streaming fashion
|
||
|
Returns:
|
||
|
List[List[int]]: best path result
|
||
|
"""
|
||
|
assert speech.shape[0] == speech_lengths.shape[0]
|
||
|
assert decoding_chunk_size != 0
|
||
|
batch_size = speech.shape[0]
|
||
|
# Let's assume B = batch_size
|
||
|
# encoder_out: (B, maxlen, encoder_dim)
|
||
|
# encoder_mask: (B, 1, Tmax)
|
||
|
encoder_out, encoder_mask = self._forward_encoder(
|
||
|
speech, speech_lengths, decoding_chunk_size,
|
||
|
num_decoding_left_chunks, simulate_streaming)
|
||
|
maxlen = encoder_out.size(1)
|
||
|
# (TODO Hui Zhang): bool no support reduce_sum
|
||
|
# encoder_out_lens = encoder_mask.squeeze(1).sum(1)
|
||
|
encoder_out_lens = encoder_mask.squeeze(1).astype(paddle.int).sum(1)
|
||
|
ctc_probs = self.ctc.log_softmax(encoder_out) # (B, maxlen, vocab_size)
|
||
|
topk_prob, topk_index = ctc_probs.topk(1, axis=2) # (B, maxlen, 1)
|
||
|
topk_index = topk_index.view(batch_size, maxlen) # (B, maxlen)
|
||
|
pad_mask = make_pad_mask(encoder_out_lens) # (B, maxlen)
|
||
|
topk_index = topk_index.masked_fill_(pad_mask, self.eos) # (B, maxlen)
|
||
|
hyps = [hyp.tolist() for hyp in topk_index]
|
||
|
hyps = [remove_duplicates_and_blank(hyp) for hyp in hyps]
|
||
|
return hyps
|
||
|
|
||
|
def _ctc_prefix_beam_search(
|
||
|
self,
|
||
|
speech: paddle.Tensor,
|
||
|
speech_lengths: paddle.Tensor,
|
||
|
beam_size: int,
|
||
|
decoding_chunk_size: int=-1,
|
||
|
num_decoding_left_chunks: int=-1,
|
||
|
simulate_streaming: bool=False,
|
||
|
blank_id: int=0, ) -> Tuple[List[Tuple[int, float]], paddle.Tensor]:
|
||
|
""" CTC prefix beam search inner implementation
|
||
|
Args:
|
||
|
speech (paddle.Tensor): (batch, max_len, feat_dim)
|
||
|
speech_length (paddle.Tensor): (batch, )
|
||
|
beam_size (int): beam size for beam search
|
||
|
decoding_chunk_size (int): decoding chunk for dynamic chunk
|
||
|
trained model.
|
||
|
<0: for decoding, use full chunk.
|
||
|
>0: for decoding, use fixed chunk size as set.
|
||
|
0: used for training, it's prohibited here
|
||
|
simulate_streaming (bool): whether do encoder forward in a
|
||
|
streaming fashion
|
||
|
Returns:
|
||
|
List[Tuple[int, float]]: nbest results, (N,1), (text, likelihood)
|
||
|
paddle.Tensor: encoder output, (1, max_len, encoder_dim),
|
||
|
it will be used for rescoring in attention rescoring mode
|
||
|
"""
|
||
|
assert speech.shape[0] == speech_lengths.shape[0]
|
||
|
assert decoding_chunk_size != 0
|
||
|
batch_size = speech.shape[0]
|
||
|
# For CTC prefix beam search, we only support batch_size=1
|
||
|
assert batch_size == 1
|
||
|
# Let's assume B = batch_size and N = beam_size
|
||
|
# 1. Encoder forward and get CTC score
|
||
|
encoder_out, encoder_mask = self._forward_encoder(
|
||
|
speech, speech_lengths, decoding_chunk_size,
|
||
|
num_decoding_left_chunks,
|
||
|
simulate_streaming) # (B, maxlen, encoder_dim)
|
||
|
maxlen = encoder_out.size(1)
|
||
|
ctc_probs = self.ctc.log_softmax(encoder_out) # (1, maxlen, vocab_size)
|
||
|
ctc_probs = ctc_probs.squeeze(0)
|
||
|
# cur_hyps: (prefix, (blank_ending_score, none_blank_ending_score))
|
||
|
cur_hyps = [(tuple(), (0.0, -float('inf')))]
|
||
|
# 2. CTC beam search step by step
|
||
|
for t in range(0, maxlen):
|
||
|
logp = ctc_probs[t] # (vocab_size,)
|
||
|
# key: prefix, value (pb, pnb), default value(-inf, -inf)
|
||
|
next_hyps = defaultdict(lambda: (-float('inf'), -float('inf')))
|
||
|
# 2.1 First beam prune: select topk best
|
||
|
top_k_logp, top_k_index = logp.topk(beam_size) # (beam_size,)
|
||
|
for s in top_k_index:
|
||
|
s = s.item()
|
||
|
ps = logp[s].item()
|
||
|
for prefix, (pb, pnb) in cur_hyps:
|
||
|
last = prefix[-1] if len(prefix) > 0 else None
|
||
|
if s == blank_id: # blank
|
||
|
n_pb, n_pnb = next_hyps[prefix]
|
||
|
n_pb = log_add([n_pb, pb + ps, pnb + ps])
|
||
|
next_hyps[prefix] = (n_pb, n_pnb)
|
||
|
elif s == last:
|
||
|
# Update *ss -> *s;
|
||
|
n_pb, n_pnb = next_hyps[prefix]
|
||
|
n_pnb = log_add([n_pnb, pnb + ps])
|
||
|
next_hyps[prefix] = (n_pb, n_pnb)
|
||
|
# Update *s-s -> *ss, - is for blank
|
||
|
n_prefix = prefix + (s, )
|
||
|
n_pb, n_pnb = next_hyps[n_prefix]
|
||
|
n_pnb = log_add([n_pnb, pb + ps])
|
||
|
next_hyps[n_prefix] = (n_pb, n_pnb)
|
||
|
else:
|
||
|
n_prefix = prefix + (s, )
|
||
|
n_pb, n_pnb = next_hyps[n_prefix]
|
||
|
n_pnb = log_add([n_pnb, pb + ps, pnb + ps])
|
||
|
next_hyps[n_prefix] = (n_pb, n_pnb)
|
||
|
|
||
|
# 2.2 Second beam prune
|
||
|
next_hyps = sorted(
|
||
|
next_hyps.items(),
|
||
|
key=lambda x: log_add(list(x[1])),
|
||
|
reverse=True)
|
||
|
cur_hyps = next_hyps[:beam_size]
|
||
|
hyps = [(y[0], log_add([y[1][0], y[1][1]])) for y in cur_hyps]
|
||
|
return hyps, encoder_out
|
||
|
|
||
|
def ctc_prefix_beam_search(
|
||
|
self,
|
||
|
speech: paddle.Tensor,
|
||
|
speech_lengths: paddle.Tensor,
|
||
|
beam_size: int,
|
||
|
decoding_chunk_size: int=-1,
|
||
|
num_decoding_left_chunks: int=-1,
|
||
|
simulate_streaming: bool=False, ) -> List[int]:
|
||
|
""" Apply CTC prefix beam search
|
||
|
Args:
|
||
|
speech (paddle.Tensor): (batch, max_len, feat_dim)
|
||
|
speech_length (paddle.Tensor): (batch, )
|
||
|
beam_size (int): beam size for beam search
|
||
|
decoding_chunk_size (int): decoding chunk for dynamic chunk
|
||
|
trained model.
|
||
|
<0: for decoding, use full chunk.
|
||
|
>0: for decoding, use fixed chunk size as set.
|
||
|
0: used for training, it's prohibited here
|
||
|
simulate_streaming (bool): whether do encoder forward in a
|
||
|
streaming fashion
|
||
|
Returns:
|
||
|
List[int]: CTC prefix beam search nbest results
|
||
|
"""
|
||
|
hyps, _ = self._ctc_prefix_beam_search(
|
||
|
speech, speech_lengths, beam_size, decoding_chunk_size,
|
||
|
num_decoding_left_chunks, simulate_streaming)
|
||
|
return hyps[0][0]
|
||
|
|
||
|
def attention_rescoring(
|
||
|
self,
|
||
|
speech: paddle.Tensor,
|
||
|
speech_lengths: paddle.Tensor,
|
||
|
beam_size: int,
|
||
|
decoding_chunk_size: int=-1,
|
||
|
num_decoding_left_chunks: int=-1,
|
||
|
ctc_weight: float=0.0,
|
||
|
simulate_streaming: bool=False, ) -> List[int]:
|
||
|
""" Apply attention rescoring decoding, CTC prefix beam search
|
||
|
is applied first to get nbest, then we resoring the nbest on
|
||
|
attention decoder with corresponding encoder out
|
||
|
Args:
|
||
|
speech (paddle.Tensor): (batch, max_len, feat_dim)
|
||
|
speech_length (paddle.Tensor): (batch, )
|
||
|
beam_size (int): beam size for beam search
|
||
|
decoding_chunk_size (int): decoding chunk for dynamic chunk
|
||
|
trained model.
|
||
|
<0: for decoding, use full chunk.
|
||
|
>0: for decoding, use fixed chunk size as set.
|
||
|
0: used for training, it's prohibited here
|
||
|
simulate_streaming (bool): whether do encoder forward in a
|
||
|
streaming fashion
|
||
|
Returns:
|
||
|
List[int]: Attention rescoring result
|
||
|
"""
|
||
|
assert speech.shape[0] == speech_lengths.shape[0]
|
||
|
assert decoding_chunk_size != 0
|
||
|
device = speech.place
|
||
|
batch_size = speech.shape[0]
|
||
|
# For attention rescoring we only support batch_size=1
|
||
|
assert batch_size == 1
|
||
|
# encoder_out: (1, maxlen, encoder_dim), len(hyps) = beam_size
|
||
|
hyps, encoder_out = self._ctc_prefix_beam_search(
|
||
|
speech, speech_lengths, beam_size, decoding_chunk_size,
|
||
|
num_decoding_left_chunks, simulate_streaming)
|
||
|
|
||
|
assert len(hyps) == beam_size
|
||
|
hyps_pad = pad_sequence([
|
||
|
paddle.to_tensor(hyp[0], place=device, dtype=paddle.long)
|
||
|
for hyp in hyps
|
||
|
], True, self.ignore_id) # (beam_size, max_hyps_len)
|
||
|
hyps_lens = paddle.to_tensor(
|
||
|
[len(hyp[0]) for hyp in hyps], place=device,
|
||
|
dtype=paddle.long) # (beam_size,)
|
||
|
hyps_pad, _ = add_sos_eos(hyps_pad, self.sos, self.eos, self.ignore_id)
|
||
|
hyps_lens = hyps_lens + 1 # Add <sos> at begining
|
||
|
encoder_out = encoder_out.repeat(beam_size, 1, 1)
|
||
|
encoder_mask = paddle.ones(
|
||
|
(beam_size, 1, encoder_out.size(1)), dtype=paddle.bool)
|
||
|
decoder_out, _ = self.decoder(
|
||
|
encoder_out, encoder_mask, hyps_pad,
|
||
|
hyps_lens) # (beam_size, max_hyps_len, vocab_size)
|
||
|
decoder_out = paddle.nn.functional.log_softmax(decoder_out, axis=-1)
|
||
|
decoder_out = decoder_out.numpy()
|
||
|
# Only use decoder score for rescoring
|
||
|
best_score = -float('inf')
|
||
|
best_index = 0
|
||
|
for i, hyp in enumerate(hyps):
|
||
|
score = 0.0
|
||
|
for j, w in enumerate(hyp[0]):
|
||
|
score += decoder_out[i][j][w]
|
||
|
score += decoder_out[i][len(hyp[0])][self.eos]
|
||
|
# add ctc score
|
||
|
score += hyp[1] * ctc_weight
|
||
|
if score > best_score:
|
||
|
best_score = score
|
||
|
best_index = i
|
||
|
return hyps[best_index][0]
|
||
|
|
||
|
@jit.export
|
||
|
def subsampling_rate(self) -> int:
|
||
|
""" Export interface for c++ call, return subsampling_rate of the
|
||
|
model
|
||
|
"""
|
||
|
return self.encoder.embed.subsampling_rate
|
||
|
|
||
|
@jit.export
|
||
|
def right_context(self) -> int:
|
||
|
""" Export interface for c++ call, return right_context of the model
|
||
|
"""
|
||
|
return self.encoder.embed.right_context
|
||
|
|
||
|
@jit.export
|
||
|
def sos_symbol(self) -> int:
|
||
|
""" Export interface for c++ call, return sos symbol id of the model
|
||
|
"""
|
||
|
return self.sos
|
||
|
|
||
|
@jit.export
|
||
|
def eos_symbol(self) -> int:
|
||
|
""" Export interface for c++ call, return eos symbol id of the model
|
||
|
"""
|
||
|
return self.eos
|
||
|
|
||
|
@jit.export
|
||
|
def forward_encoder_chunk(
|
||
|
self,
|
||
|
xs: paddle.Tensor,
|
||
|
offset: int,
|
||
|
required_cache_size: int,
|
||
|
subsampling_cache: Optional[paddle.Tensor]=None,
|
||
|
elayers_output_cache: Optional[List[paddle.Tensor]]=None,
|
||
|
conformer_cnn_cache: Optional[List[paddle.Tensor]]=None,
|
||
|
) -> Tuple[paddle.Tensor, paddle.Tensor, List[paddle.Tensor], List[
|
||
|
paddle.Tensor]]:
|
||
|
""" Export interface for c++ call, give input chunk xs, and return
|
||
|
output from time 0 to current chunk.
|
||
|
Args:
|
||
|
xs (paddle.Tensor): chunk input
|
||
|
subsampling_cache (Optional[paddle.Tensor]): subsampling cache
|
||
|
elayers_output_cache (Optional[List[paddle.Tensor]]):
|
||
|
transformer/conformer encoder layers output cache
|
||
|
conformer_cnn_cache (Optional[List[paddle.Tensor]]): conformer
|
||
|
cnn cache
|
||
|
Returns:
|
||
|
paddle.Tensor: output, it ranges from time 0 to current chunk.
|
||
|
paddle.Tensor: subsampling cache
|
||
|
List[paddle.Tensor]: attention cache
|
||
|
List[paddle.Tensor]: conformer cnn cache
|
||
|
"""
|
||
|
return self.encoder.forward_chunk(
|
||
|
xs, offset, required_cache_size, subsampling_cache,
|
||
|
elayers_output_cache, conformer_cnn_cache)
|
||
|
|
||
|
@jit.export
|
||
|
def ctc_activation(self, xs: paddle.Tensor) -> paddle.Tensor:
|
||
|
""" Export interface for c++ call, apply linear transform and log
|
||
|
softmax before ctc
|
||
|
Args:
|
||
|
xs (paddle.Tensor): encoder output
|
||
|
Returns:
|
||
|
paddle.Tensor: activation before ctc
|
||
|
"""
|
||
|
return self.ctc.log_softmax(xs)
|
||
|
|
||
|
@jit.export
|
||
|
def forward_attention_decoder(
|
||
|
self,
|
||
|
hyps: paddle.Tensor,
|
||
|
hyps_lens: paddle.Tensor,
|
||
|
encoder_out: paddle.Tensor, ) -> paddle.Tensor:
|
||
|
""" Export interface for c++ call, forward decoder with multiple
|
||
|
hypothesis from ctc prefix beam search and one encoder output
|
||
|
Args:
|
||
|
hyps (paddle.Tensor): hyps from ctc prefix beam search, already
|
||
|
pad sos at the begining, (B, T)
|
||
|
hyps_lens (paddle.Tensor): length of each hyp in hyps, (B)
|
||
|
encoder_out (paddle.Tensor): corresponding encoder output, (B=1, T, D)
|
||
|
Returns:
|
||
|
paddle.Tensor: decoder output, (B, L)
|
||
|
"""
|
||
|
assert encoder_out.size(0) == 1
|
||
|
num_hyps = hyps.size(0)
|
||
|
assert hyps_lens.size(0) == num_hyps
|
||
|
encoder_out = encoder_out.repeat(num_hyps, 1, 1)
|
||
|
# (B, 1, T)
|
||
|
encoder_mask = paddle.ones(
|
||
|
[num_hyps, 1, encoder_out.size(1)], dtype=paddle.bool)
|
||
|
# (num_hyps, max_hyps_len, vocab_size)
|
||
|
decoder_out, _ = self.decoder(encoder_out, encoder_mask, hyps,
|
||
|
hyps_lens)
|
||
|
decoder_out = paddle.nn.functional.log_softmax(decoder_out, dim=-1)
|
||
|
return decoder_out
|
||
|
|
||
|
@paddle.no_grad()
|
||
|
def decode(self,
|
||
|
feats: paddle.Tensor,
|
||
|
feats_lengths: paddle.Tensor,
|
||
|
text_feature: Dict[str, int],
|
||
|
decoding_method: str,
|
||
|
lang_model_path: str,
|
||
|
beam_alpha: float,
|
||
|
beam_beta: float,
|
||
|
beam_size: int,
|
||
|
cutoff_prob: float,
|
||
|
cutoff_top_n: int,
|
||
|
num_processes: int,
|
||
|
ctc_weight: float=0.0,
|
||
|
decoding_chunk_size: int=-1,
|
||
|
num_decoding_left_chunks: int=-1,
|
||
|
simulate_streaming: bool=False):
|
||
|
"""u2 decoding.
|
||
|
|
||
|
Args:
|
||
|
feats (Tenosr): audio features, (B, T, D)
|
||
|
feats_lengths (Tenosr): (B)
|
||
|
text_feature (TextFeaturizer): text feature object.
|
||
|
decoding_method (str): decoding mode, e.g.
|
||
|
'attention', 'ctc_greedy_search',
|
||
|
'ctc_prefix_beam_search', 'attention_rescoring'
|
||
|
lang_model_path (str): lm path.
|
||
|
beam_alpha (float): lm weight.
|
||
|
beam_beta (float): length penalty.
|
||
|
beam_size (int): beam size for search
|
||
|
cutoff_prob (float): for prune.
|
||
|
cutoff_top_n (int): for prune.
|
||
|
num_processes (int):
|
||
|
ctc_weight (float, optional): ctc weight for attention rescoring decode mode. Defaults to 0.0.
|
||
|
decoding_chunk_size (int, optional): decoding chunk size. Defaults to -1.
|
||
|
<0: for decoding, use full chunk.
|
||
|
>0: for decoding, use fixed chunk size as set.
|
||
|
0: used for training, it's prohibited here.
|
||
|
num_decoding_left_chunks (int, optional):
|
||
|
number of left chunks for decoding. Defaults to -1.
|
||
|
simulate_streaming (bool, optional): simulate streaming inference. Defaults to False.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: when not support decoding_method.
|
||
|
|
||
|
Returns:
|
||
|
List[List[int]]: transcripts.
|
||
|
"""
|
||
|
batch_size = feats.size(0)
|
||
|
if decoding_method in ['ctc_prefix_beam_search',
|
||
|
'attention_rescoring'] and batch_size > 1:
|
||
|
logger.fatal(
|
||
|
f'decoding mode {decoding_method} must be running with batch_size == 1'
|
||
|
)
|
||
|
sys.exit(1)
|
||
|
|
||
|
if decoding_method == 'attention':
|
||
|
hyps = self.recognize(
|
||
|
feats,
|
||
|
feats_lengths,
|
||
|
beam_size=beam_size,
|
||
|
decoding_chunk_size=decoding_chunk_size,
|
||
|
num_decoding_left_chunks=num_decoding_left_chunks,
|
||
|
simulate_streaming=simulate_streaming)
|
||
|
hyps = [hyp.tolist() for hyp in hyps]
|
||
|
elif decoding_method == 'ctc_greedy_search':
|
||
|
hyps = self.ctc_greedy_search(
|
||
|
feats,
|
||
|
feats_lengths,
|
||
|
decoding_chunk_size=decoding_chunk_size,
|
||
|
num_decoding_left_chunks=num_decoding_left_chunks,
|
||
|
simulate_streaming=simulate_streaming)
|
||
|
# ctc_prefix_beam_search and attention_rescoring only return one
|
||
|
# result in List[int], change it to List[List[int]] for compatible
|
||
|
# with other batch decoding mode
|
||
|
elif decoding_method == 'ctc_prefix_beam_search':
|
||
|
assert feats.size(0) == 1
|
||
|
hyp = self.ctc_prefix_beam_search(
|
||
|
feats,
|
||
|
feats_lengths,
|
||
|
beam_size,
|
||
|
decoding_chunk_size=decoding_chunk_size,
|
||
|
num_decoding_left_chunks=num_decoding_left_chunks,
|
||
|
simulate_streaming=simulate_streaming)
|
||
|
hyps = [hyp]
|
||
|
elif decoding_method == 'attention_rescoring':
|
||
|
assert feats.size(0) == 1
|
||
|
hyp = self.attention_rescoring(
|
||
|
feats,
|
||
|
feats_lengths,
|
||
|
beam_size,
|
||
|
decoding_chunk_size=decoding_chunk_size,
|
||
|
num_decoding_left_chunks=num_decoding_left_chunks,
|
||
|
ctc_weight=ctc_weight,
|
||
|
simulate_streaming=simulate_streaming)
|
||
|
hyps = [hyp]
|
||
|
else:
|
||
|
raise ValueError(f"Not support decoding method: {decoding_method}")
|
||
|
|
||
|
res = [text_feature.defeaturize(hyp) for hyp in hyps]
|
||
|
return res
|
||
|
|
||
|
|
||
|
class U2Model(U2BaseModel):
|
||
|
def __init__(self, configs: dict):
|
||
|
vocab_size, encoder, decoder, ctc = U2Model._init_from_config(configs)
|
||
|
|
||
|
super().__init__(
|
||
|
vocab_size=vocab_size,
|
||
|
encoder=encoder,
|
||
|
decoder=decoder,
|
||
|
ctc=ctc,
|
||
|
**configs['model_conf'])
|
||
|
|
||
|
@classmethod
|
||
|
def _init_from_config(cls, configs: dict):
|
||
|
"""init sub module for model.
|
||
|
|
||
|
Args:
|
||
|
configs (dict): config dict.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: raise when using not support encoder type.
|
||
|
|
||
|
Returns:
|
||
|
int, nn.Layer, nn.Layer, nn.Layer: vocab size, encoder, decoder, ctc
|
||
|
"""
|
||
|
if configs['cmvn_file'] is not None:
|
||
|
mean, istd = load_cmvn(configs['cmvn_file'],
|
||
|
configs['cmvn_file_type'])
|
||
|
global_cmvn = GlobalCMVN(
|
||
|
paddle.to_tensor(mean, dtype=paddle.float),
|
||
|
paddle.to_tensor(istd, dtype=paddle.float))
|
||
|
else:
|
||
|
global_cmvn = None
|
||
|
|
||
|
input_dim = configs['input_dim']
|
||
|
vocab_size = configs['output_dim']
|
||
|
assert input_dim != 0, input_dim
|
||
|
assert vocab_size != 0, vocab_size
|
||
|
|
||
|
encoder_type = configs.get('encoder', 'transformer')
|
||
|
logger.info(f"U2 Encoder type: {encoder_type}")
|
||
|
if encoder_type == 'transformer':
|
||
|
encoder = TransformerEncoder(
|
||
|
input_dim, global_cmvn=global_cmvn, **configs['encoder_conf'])
|
||
|
elif encoder_type == 'conformer':
|
||
|
encoder = ConformerEncoder(
|
||
|
input_dim, global_cmvn=global_cmvn, **configs['encoder_conf'])
|
||
|
else:
|
||
|
raise ValueError(f"not support encoder type:{encoder_type}")
|
||
|
|
||
|
decoder = TransformerDecoder(vocab_size,
|
||
|
encoder.output_size(),
|
||
|
**configs['decoder_conf'])
|
||
|
ctc = CTCDecoder(
|
||
|
odim=vocab_size,
|
||
|
enc_n_units=encoder.output_size(),
|
||
|
blank_id=0,
|
||
|
dropout_rate=0.0,
|
||
|
reduction=True, # sum
|
||
|
batch_average=True) # sum / batch_size
|
||
|
|
||
|
return vocab_size, encoder, decoder, ctc
|
||
|
|
||
|
@classmethod
|
||
|
def from_config(cls, configs: dict):
|
||
|
"""init model.
|
||
|
|
||
|
Args:
|
||
|
configs (dict): config dict.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: raise when using not support encoder type.
|
||
|
|
||
|
Returns:
|
||
|
nn.Layer: U2Model
|
||
|
"""
|
||
|
model = cls(configs)
|
||
|
return model
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, dataset, config, checkpoint_path):
|
||
|
"""Build a DeepSpeech2Model model from a pretrained model.
|
||
|
|
||
|
Args:
|
||
|
dataset (paddle.io.Dataset): not used.
|
||
|
config (yacs.config.CfgNode): model configs
|
||
|
checkpoint_path (Path or str): the path of pretrained model checkpoint, without extension name
|
||
|
|
||
|
Returns:
|
||
|
DeepSpeech2Model: The model built from pretrained result.
|
||
|
"""
|
||
|
config.defrost()
|
||
|
config.input_dim = dataset.feature_size
|
||
|
config.output_dim = dataset.vocab_size
|
||
|
config.freeze()
|
||
|
model = cls.from_config(config)
|
||
|
|
||
|
if checkpoint_path:
|
||
|
infos = checkpoint.load_parameters(
|
||
|
model, checkpoint_path=checkpoint_path)
|
||
|
logger.info(f"checkpoint info: {infos}")
|
||
|
layer_tools.summary(model)
|
||
|
return model
|
||
|
|
||
|
|
||
|
class U2InferModel(U2Model):
|
||
|
def __init__(self, configs: dict):
|
||
|
super().__init__(configs)
|
||
|
|
||
|
def forward(self,
|
||
|
feats,
|
||
|
feats_lengths,
|
||
|
decoding_chunk_size=-1,
|
||
|
num_decoding_left_chunks=-1,
|
||
|
simulate_streaming=False):
|
||
|
"""export model function
|
||
|
|
||
|
Args:
|
||
|
feats (Tensor): [B, T, D]
|
||
|
feats_lengths (Tensor): [B]
|
||
|
|
||
|
Returns:
|
||
|
List[List[int]]: best path result
|
||
|
"""
|
||
|
return self.ctc_greedy_search(
|
||
|
feats,
|
||
|
feats_lengths,
|
||
|
decoding_chunk_size=decoding_chunk_size,
|
||
|
num_decoding_left_chunks=num_decoding_left_chunks,
|
||
|
simulate_streaming=simulate_streaming)
|