You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
264 lines
9.1 KiB
264 lines
9.1 KiB
2 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
# Copyright 2019 Mobvoi Inc. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# Modified from wenet(https://github.com/wenet-e2e/wenet)
|
||
|
"""Subsampling layer definition."""
|
||
|
from typing import Tuple
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn.functional as F
|
||
|
from paddle import nn
|
||
|
|
||
|
from paddlespeech.s2t import masked_fill
|
||
|
from paddlespeech.s2t.modules.align import Conv1D
|
||
|
from paddlespeech.s2t.modules.conv2d import Conv2DValid
|
||
|
from paddlespeech.s2t.utils.log import Log
|
||
|
|
||
|
logger = Log(__name__).getlog()
|
||
|
|
||
|
__all__ = [
|
||
|
"TimeReductionLayerStream", "TimeReductionLayer1D", "TimeReductionLayer2D"
|
||
|
]
|
||
|
|
||
|
|
||
|
class TimeReductionLayer1D(nn.Layer):
|
||
|
"""
|
||
|
Modified NeMo,
|
||
|
Squeezeformer Time Reduction procedure.
|
||
|
Downsamples the audio by `stride` in the time dimension.
|
||
|
Args:
|
||
|
channel (int): input dimension of
|
||
|
MultiheadAttentionMechanism and PositionwiseFeedForward
|
||
|
out_dim (int): Output dimension of the module.
|
||
|
kernel_size (int): Conv kernel size for
|
||
|
depthwise convolution in convolution module
|
||
|
stride (int): Downsampling factor in time dimension.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
channel: int,
|
||
|
out_dim: int,
|
||
|
kernel_size: int=5,
|
||
|
stride: int=2):
|
||
|
super(TimeReductionLayer1D, self).__init__()
|
||
|
|
||
|
self.channel = channel
|
||
|
self.out_dim = out_dim
|
||
|
self.kernel_size = kernel_size
|
||
|
self.stride = stride
|
||
|
self.padding = max(0, self.kernel_size - self.stride)
|
||
|
|
||
|
self.dw_conv = Conv1D(
|
||
|
in_channels=channel,
|
||
|
out_channels=channel,
|
||
|
kernel_size=kernel_size,
|
||
|
stride=stride,
|
||
|
padding=self.padding,
|
||
|
groups=channel, )
|
||
|
|
||
|
self.pw_conv = Conv1D(
|
||
|
in_channels=channel,
|
||
|
out_channels=out_dim,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
groups=1, )
|
||
|
|
||
|
self.init_weights()
|
||
|
|
||
|
def init_weights(self):
|
||
|
dw_max = self.kernel_size**-0.5
|
||
|
pw_max = self.channel**-0.5
|
||
|
self.dw_conv._param_attr = paddle.nn.initializer.Uniform(
|
||
|
low=-dw_max, high=dw_max)
|
||
|
self.dw_conv._bias_attr = paddle.nn.initializer.Uniform(
|
||
|
low=-dw_max, high=dw_max)
|
||
|
self.pw_conv._param_attr = paddle.nn.initializer.Uniform(
|
||
|
low=-pw_max, high=pw_max)
|
||
|
self.pw_conv._bias_attr = paddle.nn.initializer.Uniform(
|
||
|
low=-pw_max, high=pw_max)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
xs,
|
||
|
xs_lens: paddle.Tensor,
|
||
|
mask: paddle.Tensor=paddle.ones((0, 0, 0), dtype=paddle.bool),
|
||
|
mask_pad: paddle.Tensor=paddle.ones((0, 0, 0),
|
||
|
dtype=paddle.bool), ):
|
||
|
xs = xs.transpose([0, 2, 1]) # [B, C, T]
|
||
|
xs = masked_fill(xs, mask_pad.equal(0), 0.0)
|
||
|
|
||
|
xs = self.dw_conv(xs)
|
||
|
xs = self.pw_conv(xs)
|
||
|
|
||
|
xs = xs.transpose([0, 2, 1]) # [B, T, C]
|
||
|
|
||
|
B, T, D = xs.shape
|
||
|
mask = mask[:, ::self.stride, ::self.stride]
|
||
|
mask_pad = mask_pad[:, :, ::self.stride]
|
||
|
L = mask_pad.shape[-1]
|
||
|
# For JIT exporting, we remove F.pad operator.
|
||
|
if L - T < 0:
|
||
|
xs = xs[:, :L - T, :]
|
||
|
else:
|
||
|
dummy_pad = paddle.zeros([B, L - T, D], dtype=paddle.float32)
|
||
|
xs = paddle.concat([xs, dummy_pad], axis=1)
|
||
|
|
||
|
xs_lens = (xs_lens + 1) // 2
|
||
|
return xs, xs_lens, mask, mask_pad
|
||
|
|
||
|
|
||
|
class TimeReductionLayer2D(nn.Layer):
|
||
|
def __init__(self, kernel_size: int=5, stride: int=2, encoder_dim: int=256):
|
||
|
super(TimeReductionLayer2D, self).__init__()
|
||
|
self.encoder_dim = encoder_dim
|
||
|
self.kernel_size = kernel_size
|
||
|
self.dw_conv = Conv2DValid(
|
||
|
in_channels=encoder_dim,
|
||
|
out_channels=encoder_dim,
|
||
|
kernel_size=(kernel_size, 1),
|
||
|
stride=stride,
|
||
|
valid_trigy=True)
|
||
|
self.pw_conv = Conv2DValid(
|
||
|
in_channels=encoder_dim,
|
||
|
out_channels=encoder_dim,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
valid_trigx=False,
|
||
|
valid_trigy=False)
|
||
|
|
||
|
self.kernel_size = kernel_size
|
||
|
self.stride = stride
|
||
|
self.init_weights()
|
||
|
|
||
|
def init_weights(self):
|
||
|
dw_max = self.kernel_size**-0.5
|
||
|
pw_max = self.encoder_dim**-0.5
|
||
|
self.dw_conv._param_attr = paddle.nn.initializer.Uniform(
|
||
|
low=-dw_max, high=dw_max)
|
||
|
self.dw_conv._bias_attr = paddle.nn.initializer.Uniform(
|
||
|
low=-dw_max, high=dw_max)
|
||
|
self.pw_conv._param_attr = paddle.nn.initializer.Uniform(
|
||
|
low=-pw_max, high=pw_max)
|
||
|
self.pw_conv._bias_attr = paddle.nn.initializer.Uniform(
|
||
|
low=-pw_max, high=pw_max)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
xs: paddle.Tensor,
|
||
|
xs_lens: paddle.Tensor,
|
||
|
mask: paddle.Tensor=paddle.ones((0, 0, 0), dtype=paddle.bool),
|
||
|
mask_pad: paddle.Tensor=paddle.ones((0, 0, 0), dtype=paddle.bool),
|
||
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
||
|
xs = masked_fill(xs, mask_pad.transpose([0, 2, 1]).equal(0), 0.0)
|
||
|
xs = xs.unsqueeze(1)
|
||
|
padding1 = self.kernel_size - self.stride
|
||
|
xs = F.pad(
|
||
|
xs, (0, 0, 0, 0, 0, padding1, 0, 0), mode='constant', value=0.)
|
||
|
xs = self.dw_conv(xs.transpose([0, 3, 2, 1]))
|
||
|
xs = self.pw_conv(xs).transpose([0, 3, 2, 1]).squeeze(1)
|
||
|
tmp_length = xs.shape[1]
|
||
|
xs_lens = (xs_lens + 1) // 2
|
||
|
padding2 = max(0, (xs_lens.max() - tmp_length).item())
|
||
|
batch_size, hidden = xs.shape[0], xs.shape[-1]
|
||
|
dummy_pad = paddle.zeros(
|
||
|
[batch_size, padding2, hidden], dtype=paddle.float32)
|
||
|
xs = paddle.concat([xs, dummy_pad], axis=1)
|
||
|
mask = mask[:, ::2, ::2]
|
||
|
mask_pad = mask_pad[:, :, ::2]
|
||
|
return xs, xs_lens, mask, mask_pad
|
||
|
|
||
|
|
||
|
class TimeReductionLayerStream(nn.Layer):
|
||
|
"""
|
||
|
Squeezeformer Time Reduction procedure.
|
||
|
Downsamples the audio by `stride` in the time dimension.
|
||
|
Args:
|
||
|
channel (int): input dimension of
|
||
|
MultiheadAttentionMechanism and PositionwiseFeedForward
|
||
|
out_dim (int): Output dimension of the module.
|
||
|
kernel_size (int): Conv kernel size for
|
||
|
depthwise convolution in convolution module
|
||
|
stride (int): Downsampling factor in time dimension.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
channel: int,
|
||
|
out_dim: int,
|
||
|
kernel_size: int=1,
|
||
|
stride: int=2):
|
||
|
super(TimeReductionLayerStream, self).__init__()
|
||
|
|
||
|
self.channel = channel
|
||
|
self.out_dim = out_dim
|
||
|
self.kernel_size = kernel_size
|
||
|
self.stride = stride
|
||
|
|
||
|
self.dw_conv = Conv1D(
|
||
|
in_channels=channel,
|
||
|
out_channels=channel,
|
||
|
kernel_size=kernel_size,
|
||
|
stride=stride,
|
||
|
padding=0,
|
||
|
groups=channel)
|
||
|
|
||
|
self.pw_conv = Conv1D(
|
||
|
in_channels=channel,
|
||
|
out_channels=out_dim,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
groups=1)
|
||
|
self.init_weights()
|
||
|
|
||
|
def init_weights(self):
|
||
|
dw_max = self.kernel_size**-0.5
|
||
|
pw_max = self.channel**-0.5
|
||
|
self.dw_conv._param_attr = paddle.nn.initializer.Uniform(
|
||
|
low=-dw_max, high=dw_max)
|
||
|
self.dw_conv._bias_attr = paddle.nn.initializer.Uniform(
|
||
|
low=-dw_max, high=dw_max)
|
||
|
self.pw_conv._param_attr = paddle.nn.initializer.Uniform(
|
||
|
low=-pw_max, high=pw_max)
|
||
|
self.pw_conv._bias_attr = paddle.nn.initializer.Uniform(
|
||
|
low=-pw_max, high=pw_max)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
xs,
|
||
|
xs_lens: paddle.Tensor,
|
||
|
mask: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool),
|
||
|
mask_pad: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool)):
|
||
|
xs = xs.transpose([0, 2, 1]) # [B, C, T]
|
||
|
xs = masked_fill(xs, mask_pad.equal(0), 0.0)
|
||
|
|
||
|
xs = self.dw_conv(xs)
|
||
|
xs = self.pw_conv(xs)
|
||
|
|
||
|
xs = xs.transpose([0, 2, 1]) # [B, T, C]
|
||
|
|
||
|
B, T, D = xs.shape
|
||
|
mask = mask[:, ::self.stride, ::self.stride]
|
||
|
mask_pad = mask_pad[:, :, ::self.stride]
|
||
|
L = mask_pad.shape[-1]
|
||
|
# For JIT exporting, we remove F.pad operator.
|
||
|
if L - T < 0:
|
||
|
xs = xs[:, :L - T, :]
|
||
|
else:
|
||
|
dummy_pad = paddle.zeros([B, L - T, D], dtype=paddle.float32)
|
||
|
xs = paddle.concat([xs, dummy_pad], axis=1)
|
||
|
|
||
|
xs_lens = (xs_lens + 1) // 2
|
||
|
return xs, xs_lens, mask, mask_pad
|