|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
|
|
import os
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
import soundfile as sf
|
|
|
|
|
|
|
|
from paddlespeech.t2s.exps.waveflow.config import get_cfg_defaults
|
|
|
|
from paddlespeech.t2s.models.waveflow import ConditionalWaveFlow
|
|
|
|
from paddlespeech.t2s.utils import layer_tools
|
|
|
|
|
|
|
|
|
|
|
|
def main(config, args):
|
|
|
|
if args.ngpu == 0:
|
|
|
|
paddle.set_device("cpu")
|
|
|
|
elif args.ngpu > 0:
|
|
|
|
paddle.set_device("gpu")
|
|
|
|
else:
|
|
|
|
print("ngpu should >= 0 !")
|
|
|
|
|
|
|
|
model = ConditionalWaveFlow.from_pretrained(config, args.checkpoint_path)
|
|
|
|
layer_tools.recursively_remove_weight_norm(model)
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
mel_dir = Path(args.input).expanduser()
|
|
|
|
output_dir = Path(args.output).expanduser()
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
for file_path in mel_dir.glob("*.npy"):
|
|
|
|
mel = np.load(str(file_path))
|
|
|
|
with paddle.amp.auto_cast():
|
|
|
|
audio = model.predict(mel)
|
|
|
|
audio_path = output_dir / (os.path.splitext(file_path.name)[0] + ".wav")
|
|
|
|
sf.write(audio_path, audio, config.data.sample_rate)
|
|
|
|
print("[synthesize] {} -> {}".format(file_path, audio_path))
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
config = get_cfg_defaults()
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
description="generate mel spectrogram with TransformerTTS.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--config",
|
|
|
|
type=str,
|
|
|
|
metavar="FILE",
|
|
|
|
help="extra config to overwrite the default config")
|
|
|
|
parser.add_argument(
|
|
|
|
"--checkpoint_path", type=str, help="path of the checkpoint to load.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--input",
|
|
|
|
type=str,
|
|
|
|
help="path of directory containing mel spectrogram (in .npy format)")
|
|
|
|
parser.add_argument("--output", type=str, help="path to save outputs")
|
|
|
|
parser.add_argument(
|
|
|
|
"--ngpu", type=int, default=1, help="if ngpu=0, use cpu.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--opts",
|
|
|
|
nargs=argparse.REMAINDER,
|
|
|
|
help="options to overwrite --config file and the default config, passing in KEY VALUE pairs"
|
|
|
|
)
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.config:
|
|
|
|
config.merge_from_file(args.config)
|
|
|
|
if args.opts:
|
|
|
|
config.merge_from_list(args.opts)
|
|
|
|
config.freeze()
|
|
|
|
print(config)
|
|
|
|
print(args)
|
|
|
|
|
|
|
|
main(config, args)
|