You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
240 lines
9.4 KiB
240 lines
9.4 KiB
2 years ago
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import paddle
|
||
|
from paddle.fluid import framework
|
||
|
from paddle.optimizer import Optimizer
|
||
|
|
||
|
__all__ = []
|
||
|
|
||
|
|
||
|
class SimpleAdadelta(Optimizer):
|
||
|
r"""
|
||
|
**Notes: This API does not support sparse parameter optimization.**
|
||
|
|
||
|
Adadelta Optimizer. Please refer to this for details:
|
||
|
`ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.
|
||
|
|
||
|
The update is done as follows:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
E(g_t^2) &= \rho * E(g_{t-1}^2) + (1-\rho) * g^2
|
||
|
|
||
|
learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \epsilon ) / ( E(g_t^2) + \epsilon ) }
|
||
|
|
||
|
E(dx_t^2) &= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2
|
||
|
|
||
|
Args:
|
||
|
learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
|
||
|
It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
|
||
|
epsilon (float): a small float number for numeric stability. Default 1.0e-6.
|
||
|
rho (float): a floating point value indicating the decay rate. Default 0.95.
|
||
|
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
|
||
|
This parameter is required in dygraph mode. And you can specify different options for \
|
||
|
different parameter groups such as the learning rate, weight decay, etc, \
|
||
|
then the parameters are list of dict. Note that the learning_rate in paramter groups \
|
||
|
represents the scale of base learning_rate. \
|
||
|
The default value is None in static mode, at this time all parameters will be updated.
|
||
|
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
|
||
|
It canbe a float value as coeff of L2 regularization or \
|
||
|
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
|
||
|
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
|
||
|
the regularization setting here in optimizer will be ignored for this parameter. \
|
||
|
Otherwise, the regularization setting here in optimizer will take effect. \
|
||
|
Default None, meaning there is no regularization.
|
||
|
foreach (bool, optional): whether foreach implementation of optimizer is used. The default value is None.
|
||
|
maximize (bool, optional): maximize the params based on the objective, instead of minimizing.
|
||
|
The default value is False.
|
||
|
name (str, optional): The default value is None. Normally there is no need for user
|
||
|
to set this property. For more information, please refer to
|
||
|
:ref:`api_guide_Name` .
|
||
|
|
||
|
Examples:
|
||
|
.. code-block:: python
|
||
|
|
||
|
import paddle
|
||
|
from paddlespeech.s2t.training.optimizer.adadelta import SimpleAdadelta
|
||
|
|
||
|
inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
|
||
|
linear = paddle.nn.Linear(10, 10)
|
||
|
out = linear(inp)
|
||
|
loss = paddle.mean(out)
|
||
|
adadelta = SimpleAdadelta(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
|
||
|
out.backward()
|
||
|
adadelta.step()
|
||
|
adadelta.clear_grad()
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
learning_rate=0.001,
|
||
|
epsilon=1.0e-6,
|
||
|
rho=0.95,
|
||
|
parameters=None,
|
||
|
weight_decay=0.0,
|
||
|
foreach=None,
|
||
|
maximize=False,
|
||
|
name=None, ):
|
||
|
if learning_rate is None:
|
||
|
raise ValueError("learning_rate is not set.")
|
||
|
if epsilon is None:
|
||
|
raise ValueError("epsilon is not set.")
|
||
|
if rho is None:
|
||
|
raise ValueError("rho is not set.")
|
||
|
super(SimpleAdadelta, self).__init__(
|
||
|
learning_rate=learning_rate,
|
||
|
parameters=parameters,
|
||
|
weight_decay=weight_decay,
|
||
|
name=name, )
|
||
|
|
||
|
self._epsilon = epsilon
|
||
|
self._rho = rho
|
||
|
|
||
|
self.state = 0 # self.state is 0 or 1, use to control init square_avgs and acc_deltas
|
||
|
self._weight_decay = weight_decay
|
||
|
self._learning_rate = learning_rate
|
||
|
self._foreach = foreach
|
||
|
self._maximize = maximize
|
||
|
self.square_avgs = []
|
||
|
self.acc_deltas = []
|
||
|
|
||
|
@paddle.no_grad()
|
||
|
@framework.dygraph_only
|
||
|
def step(self):
|
||
|
"""Performs a single optimization step.
|
||
|
|
||
|
Args:
|
||
|
closure (Callable, optional): A closure that reevaluates the model
|
||
|
and returns the loss.
|
||
|
"""
|
||
|
if not isinstance(self._parameter_list[0], dict):
|
||
|
params_grads = []
|
||
|
for param in self._parameter_list:
|
||
|
if param.stop_gradient:
|
||
|
continue
|
||
|
if param._grad_ivar() is not None:
|
||
|
grad_var = param._grad_ivar()
|
||
|
|
||
|
params_grads.append((param, grad_var))
|
||
|
if self.state == 0:
|
||
|
self.square_avg = paddle.zeros_like(param)
|
||
|
self.acc_delta = paddle.zeros_like(param)
|
||
|
self.square_avgs.append(self.square_avg)
|
||
|
self.acc_deltas.append(self.acc_delta)
|
||
|
|
||
|
else:
|
||
|
# optimize parameters in groups
|
||
|
params_grads = []
|
||
|
for idx, param_group in enumerate(self._param_groups):
|
||
|
for param in param_group['params']:
|
||
|
if param.stop_gradient:
|
||
|
continue
|
||
|
if param._grad_ivar() is not None:
|
||
|
grad_var = param._grad_ivar()
|
||
|
params_grads.append((param, grad_var))
|
||
|
if self.state == 0:
|
||
|
self.square_avg = paddle.zeros_like(param)
|
||
|
self.acc_delta = paddle.zeros_like(param)
|
||
|
self.square_avgs.append(self.square_avg)
|
||
|
self.acc_deltas.append(self.acc_delta)
|
||
|
|
||
|
self.state = 1
|
||
|
adadelta(
|
||
|
params_grads,
|
||
|
square_avgs=self.square_avgs,
|
||
|
acc_deltas=self.acc_deltas,
|
||
|
learning_rate=self._learning_rate,
|
||
|
rho=self._rho,
|
||
|
epsilon=self._epsilon,
|
||
|
weight_decay=self._weight_decay,
|
||
|
foreach=self._foreach,
|
||
|
maximize=self._maximize)
|
||
|
|
||
|
|
||
|
def adadelta(params_grads,
|
||
|
square_avgs,
|
||
|
acc_deltas,
|
||
|
foreach=None,
|
||
|
*,
|
||
|
learning_rate: float,
|
||
|
rho: float,
|
||
|
epsilon: float,
|
||
|
weight_decay: float,
|
||
|
maximize: bool):
|
||
|
|
||
|
if foreach is None:
|
||
|
# if foreach is None, set False
|
||
|
foreach = False
|
||
|
if not foreach:
|
||
|
# optimizer is used
|
||
|
func = _single_tensor_adadelta
|
||
|
|
||
|
func(
|
||
|
params_grads,
|
||
|
square_avgs,
|
||
|
acc_deltas,
|
||
|
learning_rate=learning_rate,
|
||
|
rho=rho,
|
||
|
epsilon=epsilon,
|
||
|
weight_decay=weight_decay,
|
||
|
maximize=maximize)
|
||
|
|
||
|
|
||
|
def _single_tensor_adadelta(params_grads,
|
||
|
square_avgs,
|
||
|
acc_deltas,
|
||
|
*,
|
||
|
learning_rate: float,
|
||
|
rho: float,
|
||
|
epsilon: float,
|
||
|
weight_decay: float,
|
||
|
maximize: bool):
|
||
|
"""
|
||
|
Calculate variables(square_avgs, acc_deltas) and update parameters.
|
||
|
"""
|
||
|
|
||
|
for (params_grad, square_avg, acc_delta) in zip(params_grads, square_avgs,
|
||
|
acc_deltas):
|
||
|
param, grad = params_grad
|
||
|
grad = grad if not maximize else -grad
|
||
|
if weight_decay != 0:
|
||
|
grad.set_value(grad.add(paddle.multiply(param, weight_decay)))
|
||
|
|
||
|
if paddle.is_complex(param):
|
||
|
square_avg = paddle.as_real(square_avg)
|
||
|
acc_delta = paddle.as_real(acc_delta)
|
||
|
grad = paddle.as_real(grad)
|
||
|
# square_avg = square_avg * rho + (1-rho) * grad * grad
|
||
|
square_avg.set_value(
|
||
|
paddle.multiply(square_avg, paddle.to_tensor(rho)).add(
|
||
|
paddle.multiply(paddle.to_tensor(1 - rho), grad.square())))
|
||
|
# std = (square_avg + eps).sqrt()
|
||
|
std = square_avg.add(paddle.to_tensor(epsilon)).sqrt_()
|
||
|
# delta = std / (acc_delta + eps).sqrt() * grad
|
||
|
delta = (paddle.multiply(
|
||
|
paddle.divide(
|
||
|
acc_delta.add(paddle.to_tensor(epsilon)).sqrt_(), std), grad))
|
||
|
# acc_delta = acc_delta * rho + (1-rho) * delta * delta
|
||
|
acc_delta.set_value(
|
||
|
paddle.multiply(acc_delta, paddle.to_tensor(rho)).add(
|
||
|
paddle.multiply(paddle.to_tensor(1 - rho), delta.square())))
|
||
|
if paddle.is_complex(param):
|
||
|
delta = paddle.as_real(delta)
|
||
|
# param = param - delta*learning_rate
|
||
|
param.set_value(
|
||
|
param.add(
|
||
|
paddle.multiply(
|
||
|
delta.astype('float32'), paddle.to_tensor(-learning_rate))))
|