You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/exps/ernie_sat/synthesize.py

202 lines
6.2 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from pathlib import Path
import jsonlines
import numpy as np
import paddle
import soundfile as sf
import yaml
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.am_batch_fn import build_erniesat_collate_fn
from paddlespeech.t2s.exps.syn_utils import denorm
from paddlespeech.t2s.exps.syn_utils import get_am_inference
from paddlespeech.t2s.exps.syn_utils import get_test_dataset
from paddlespeech.t2s.exps.syn_utils import get_voc_inference
def evaluate(args):
# dataloader has been too verbose
logging.getLogger("DataLoader").disabled = True
# construct dataset for evaluation
with jsonlines.open(args.test_metadata, 'r') as reader:
test_metadata = list(reader)
# Init body.
with open(args.erniesat_config) as f:
erniesat_config = CfgNode(yaml.safe_load(f))
with open(args.voc_config) as f:
voc_config = CfgNode(yaml.safe_load(f))
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(erniesat_config)
print(voc_config)
# ernie sat model
erniesat_inference = get_am_inference(
am='erniesat_dataset',
am_config=erniesat_config,
am_ckpt=args.erniesat_ckpt,
am_stat=args.erniesat_stat,
phones_dict=args.phones_dict)
test_dataset = get_test_dataset(
test_metadata=test_metadata, am='erniesat_dataset')
# vocoder
voc_inference = get_voc_inference(
voc=args.voc,
voc_config=voc_config,
voc_ckpt=args.voc_ckpt,
voc_stat=args.voc_stat)
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
collate_fn = build_erniesat_collate_fn(
mlm_prob=erniesat_config.mlm_prob,
mean_phn_span=erniesat_config.mean_phn_span,
seg_emb=erniesat_config.model['enc_input_layer'] == 'sega_mlm',
text_masking=False,
epoch=-1)
gen_raw = True
erniesat_mu, erniesat_std = np.load(args.erniesat_stat)
for datum in test_dataset:
# collate function and dataloader
utt_id = datum["utt_id"]
speech_len = datum["speech_lengths"]
# mask the middle 1/3 speech
left_bdy, right_bdy = speech_len // 3, 2 * speech_len // 3
span_bdy = [left_bdy, right_bdy]
datum.update({"span_bdy": span_bdy})
batch = collate_fn([datum])
with paddle.no_grad():
out_mels = erniesat_inference(
speech=batch["speech"],
text=batch["text"],
masked_pos=batch["masked_pos"],
speech_mask=batch["speech_mask"],
text_mask=batch["text_mask"],
speech_seg_pos=batch["speech_seg_pos"],
text_seg_pos=batch["text_seg_pos"],
span_bdy=span_bdy)
# vocoder
wav_list = []
for mel in out_mels:
part_wav = voc_inference(mel)
wav_list.append(part_wav)
wav = paddle.concat(wav_list)
wav = wav.numpy()
if gen_raw:
speech = datum['speech']
denorm_mel = denorm(speech, erniesat_mu, erniesat_std)
denorm_mel = paddle.to_tensor(denorm_mel)
wav_raw = voc_inference(denorm_mel)
wav_raw = wav_raw.numpy()
sf.write(
str(output_dir / (utt_id + ".wav")),
wav,
samplerate=erniesat_config.fs)
if gen_raw:
sf.write(
str(output_dir / (utt_id + "_raw" + ".wav")),
wav_raw,
samplerate=erniesat_config.fs)
print(f"{utt_id} done!")
def parse_args():
# parse args and config
parser = argparse.ArgumentParser(
description="Synthesize with acoustic model & vocoder")
# ernie sat
parser.add_argument(
'--erniesat_config',
type=str,
default=None,
help='Config of acoustic model.')
parser.add_argument(
'--erniesat_ckpt',
type=str,
default=None,
help='Checkpoint file of acoustic model.')
parser.add_argument(
"--erniesat_stat",
type=str,
default=None,
help="mean and standard deviation used to normalize spectrogram when training acoustic model."
)
parser.add_argument(
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
# vocoder
parser.add_argument(
'--voc',
type=str,
default='pwgan_csmsc',
choices=[
'pwgan_aishell3',
'pwgan_vctk',
'hifigan_aishell3',
'hifigan_vctk',
],
help='Choose vocoder type of tts task.')
parser.add_argument(
'--voc_config', type=str, default=None, help='Config of voc.')
parser.add_argument(
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
parser.add_argument(
"--voc_stat",
type=str,
default=None,
help="mean and standard deviation used to normalize spectrogram when training voc."
)
# other
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
parser.add_argument("--test_metadata", type=str, help="test metadata.")
parser.add_argument("--output_dir", type=str, help="output dir.")
args = parser.parse_args()
return args
def main():
args = parse_args()
if args.ngpu == 0:
paddle.set_device("cpu")
elif args.ngpu > 0:
paddle.set_device("gpu")
else:
print("ngpu should >= 0 !")
evaluate(args)
if __name__ == "__main__":
main()