You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
5.7 KiB
186 lines
5.7 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
3 years ago
|
# Modified from espnet(https://github.com/espnet/espnet)
|
||
3 years ago
|
"""Duration predictor related modules."""
|
||
|
import paddle
|
||
|
from paddle import nn
|
||
|
|
||
3 years ago
|
from paddlespeech.t2s.modules.layer_norm import LayerNorm
|
||
|
from paddlespeech.t2s.modules.masked_fill import masked_fill
|
||
3 years ago
|
|
||
|
|
||
|
class DurationPredictor(nn.Layer):
|
||
|
"""Duration predictor module.
|
||
|
|
||
|
This is a module of duration predictor described
|
||
|
in `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
|
||
|
The duration predictor predicts a duration of each frame in log domain
|
||
|
from the hidden embeddings of encoder.
|
||
|
|
||
|
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
|
||
|
https://arxiv.org/pdf/1905.09263.pdf
|
||
|
|
||
|
Note
|
||
|
----------
|
||
|
The calculation domain of outputs is different
|
||
|
between in `forward` and in `inference`. In `forward`,
|
||
|
the outputs are calculated in log domain but in `inference`,
|
||
|
those are calculated in linear domain.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
idim,
|
||
|
n_layers=2,
|
||
|
n_chans=384,
|
||
|
kernel_size=3,
|
||
|
dropout_rate=0.1,
|
||
|
offset=1.0):
|
||
|
"""Initilize duration predictor module.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
idim : int
|
||
|
Input dimension.
|
||
|
n_layers : int, optional
|
||
|
Number of convolutional layers.
|
||
|
n_chans : int, optional
|
||
|
Number of channels of convolutional layers.
|
||
|
kernel_size : int, optional
|
||
|
Kernel size of convolutional layers.
|
||
|
dropout_rate : float, optional
|
||
|
Dropout rate.
|
||
|
offset : float, optional
|
||
|
Offset value to avoid nan in log domain.
|
||
|
|
||
|
"""
|
||
|
super(DurationPredictor, self).__init__()
|
||
|
self.offset = offset
|
||
|
self.conv = nn.LayerList()
|
||
|
for idx in range(n_layers):
|
||
|
in_chans = idim if idx == 0 else n_chans
|
||
|
self.conv.append(
|
||
|
nn.Sequential(
|
||
|
nn.Conv1D(
|
||
|
in_chans,
|
||
|
n_chans,
|
||
|
kernel_size,
|
||
|
stride=1,
|
||
|
padding=(kernel_size - 1) // 2, ),
|
||
|
nn.ReLU(),
|
||
|
LayerNorm(n_chans, dim=1),
|
||
|
nn.Dropout(dropout_rate), ))
|
||
|
self.linear = nn.Linear(n_chans, 1, bias_attr=True)
|
||
|
|
||
|
def _forward(self, xs, x_masks=None, is_inference=False):
|
||
|
# (B, idim, Tmax)
|
||
|
xs = xs.transpose([0, 2, 1])
|
||
|
# (B, C, Tmax)
|
||
|
for f in self.conv:
|
||
|
xs = f(xs)
|
||
|
|
||
|
# NOTE: calculate in log domain
|
||
|
# (B, Tmax)
|
||
|
xs = self.linear(xs.transpose([0, 2, 1])).squeeze(-1)
|
||
|
|
||
|
if is_inference:
|
||
|
# NOTE: calculate in linear domain
|
||
|
xs = paddle.clip(paddle.round(xs.exp() - self.offset), min=0)
|
||
|
|
||
|
if x_masks is not None:
|
||
|
xs = masked_fill(xs, x_masks, 0.0)
|
||
|
|
||
|
return xs
|
||
|
|
||
|
def forward(self, xs, x_masks=None):
|
||
|
"""Calculate forward propagation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xs : Tensor
|
||
|
Batch of input sequences (B, Tmax, idim).
|
||
|
x_masks : ByteTensor, optional
|
||
|
Batch of masks indicating padded part (B, Tmax).
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
Tensor
|
||
|
Batch of predicted durations in log domain (B, Tmax).
|
||
|
"""
|
||
|
return self._forward(xs, x_masks, False)
|
||
|
|
||
|
def inference(self, xs, x_masks=None):
|
||
|
"""Inference duration.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xs : Tensor
|
||
|
Batch of input sequences (B, Tmax, idim).
|
||
|
x_masks : Tensor(bool), optional
|
||
|
Batch of masks indicating padded part (B, Tmax).
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
Tensor
|
||
|
Batch of predicted durations in linear domain int64 (B, Tmax).
|
||
|
"""
|
||
|
return self._forward(xs, x_masks, True)
|
||
|
|
||
|
|
||
|
class DurationPredictorLoss(nn.Layer):
|
||
|
"""Loss function module for duration predictor.
|
||
|
|
||
|
The loss value is Calculated in log domain to make it Gaussian.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, offset=1.0, reduction="mean"):
|
||
|
"""Initilize duration predictor loss module.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
offset : float, optional
|
||
|
Offset value to avoid nan in log domain.
|
||
|
reduction : str
|
||
|
Reduction type in loss calculation.
|
||
|
"""
|
||
|
super(DurationPredictorLoss, self).__init__()
|
||
|
self.criterion = nn.MSELoss(reduction=reduction)
|
||
|
self.offset = offset
|
||
|
|
||
|
def forward(self, outputs, targets):
|
||
|
"""Calculate forward propagation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
outputs : Tensor
|
||
|
Batch of prediction durations in log domain (B, T)
|
||
|
targets : Tensor
|
||
|
Batch of groundtruth durations in linear domain (B, T)
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
Tensor
|
||
|
Mean squared error loss value.
|
||
|
|
||
|
Note
|
||
|
----------
|
||
|
`outputs` is in log domain but `targets` is in linear domain.
|
||
|
"""
|
||
|
# NOTE: outputs is in log domain while targets in linear
|
||
|
targets = paddle.log(targets.cast(dtype='float32') + self.offset)
|
||
|
loss = self.criterion(outputs, targets)
|
||
|
|
||
|
return loss
|