You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
533 lines
25 KiB
533 lines
25 KiB
3 years ago
|
from typing import Tuple
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
import unittest
|
||
|
|
||
|
import decimal
|
||
|
import numpy
|
||
|
import math
|
||
|
import logging
|
||
|
from pathlib import Path
|
||
|
|
||
|
from scipy.fftpack import dct
|
||
|
|
||
|
from third_party.paddle_audio.frontend import kaldi
|
||
|
|
||
|
def round_half_up(number):
|
||
|
return int(decimal.Decimal(number).quantize(decimal.Decimal('1'), rounding=decimal.ROUND_HALF_UP))
|
||
|
|
||
|
def rolling_window(a, window, step=1):
|
||
|
# http://ellisvalentiner.com/post/2017-03-21-np-strides-trick
|
||
|
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
|
||
|
strides = a.strides + (a.strides[-1],)
|
||
|
return numpy.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)[::step]
|
||
|
|
||
|
|
||
|
def do_dither(signal, dither_value=1.0):
|
||
|
signal += numpy.random.normal(size=signal.shape) * dither_value
|
||
|
return signal
|
||
|
|
||
|
def do_remove_dc_offset(signal):
|
||
|
signal -= numpy.mean(signal)
|
||
|
return signal
|
||
|
|
||
|
def do_preemphasis(signal, coeff=0.97):
|
||
|
"""perform preemphasis on the input signal.
|
||
|
|
||
|
:param signal: The signal to filter.
|
||
|
:param coeff: The preemphasis coefficient. 0 is no filter, default is 0.95.
|
||
|
:returns: the filtered signal.
|
||
|
"""
|
||
|
return numpy.append((1-coeff)*signal[0], signal[1:] - coeff * signal[:-1])
|
||
|
|
||
|
|
||
|
def framesig(sig, frame_len, frame_step, dither=1.0, preemph=0.97, remove_dc_offset=True, wintype='hamming', stride_trick=True):
|
||
|
"""Frame a signal into overlapping frames.
|
||
|
|
||
|
:param sig: the audio signal to frame.
|
||
|
:param frame_len: length of each frame measured in samples.
|
||
|
:param frame_step: number of samples after the start of the previous frame that the next frame should begin.
|
||
|
:param winfunc: the analysis window to apply to each frame. By default no window is applied.
|
||
|
:param stride_trick: use stride trick to compute the rolling window and window multiplication faster
|
||
|
:returns: an array of frames. Size is NUMFRAMES by frame_len.
|
||
|
"""
|
||
|
slen = len(sig)
|
||
|
frame_len = int(round_half_up(frame_len))
|
||
|
frame_step = int(round_half_up(frame_step))
|
||
|
if slen <= frame_len:
|
||
|
numframes = 1
|
||
|
else:
|
||
|
numframes = 1 + (( slen - frame_len) // frame_step)
|
||
|
|
||
|
# check kaldi/src/feat/feature-window.h
|
||
|
padsignal = sig[:(numframes-1)*frame_step+frame_len]
|
||
|
if wintype is 'povey':
|
||
|
win = numpy.empty(frame_len)
|
||
|
for i in range(frame_len):
|
||
|
win[i] = (0.5-0.5*numpy.cos(2*numpy.pi/(frame_len-1)*i))**0.85
|
||
|
else: # the hamming window
|
||
|
win = numpy.hamming(frame_len)
|
||
|
|
||
|
if stride_trick:
|
||
|
frames = rolling_window(padsignal, window=frame_len, step=frame_step)
|
||
|
else:
|
||
|
indices = numpy.tile(numpy.arange(0, frame_len), (numframes, 1)) + numpy.tile(
|
||
|
numpy.arange(0, numframes * frame_step, frame_step), (frame_len, 1)).T
|
||
|
indices = numpy.array(indices, dtype=numpy.int32)
|
||
|
frames = padsignal[indices]
|
||
|
win = numpy.tile(win, (numframes, 1))
|
||
|
|
||
|
frames = frames.astype(numpy.float32)
|
||
|
raw_frames = numpy.zeros(frames.shape)
|
||
|
for frm in range(frames.shape[0]):
|
||
|
frames[frm,:] = do_dither(frames[frm,:], dither) # dither
|
||
|
frames[frm,:] = do_remove_dc_offset(frames[frm,:]) # remove dc offset
|
||
|
raw_frames[frm,:] = frames[frm,:]
|
||
|
frames[frm,:] = do_preemphasis(frames[frm,:], preemph) # preemphasize
|
||
|
|
||
|
return frames * win, raw_frames
|
||
|
|
||
|
|
||
|
def magspec(frames, NFFT):
|
||
|
"""Compute the magnitude spectrum of each frame in frames. If frames is an NxD matrix, output will be Nx(NFFT/2+1).
|
||
|
|
||
|
:param frames: the array of frames. Each row is a frame.
|
||
|
:param NFFT: the FFT length to use. If NFFT > frame_len, the frames are zero-padded.
|
||
|
:returns: If frames is an NxD matrix, output will be Nx(NFFT/2+1). Each row will be the magnitude spectrum of the corresponding frame.
|
||
|
"""
|
||
|
if numpy.shape(frames)[1] > NFFT:
|
||
|
logging.warn(
|
||
|
'frame length (%d) is greater than FFT size (%d), frame will be truncated. Increase NFFT to avoid.',
|
||
|
numpy.shape(frames)[1], NFFT)
|
||
|
complex_spec = numpy.fft.rfft(frames, NFFT)
|
||
|
return numpy.absolute(complex_spec)
|
||
|
|
||
|
|
||
|
def powspec(frames, NFFT):
|
||
|
"""Compute the power spectrum of each frame in frames. If frames is an NxD matrix, output will be Nx(NFFT/2+1).
|
||
|
|
||
|
:param frames: the array of frames. Each row is a frame.
|
||
|
:param NFFT: the FFT length to use. If NFFT > frame_len, the frames are zero-padded.
|
||
|
:returns: If frames is an NxD matrix, output will be Nx(NFFT/2+1). Each row will be the power spectrum of the corresponding frame.
|
||
|
"""
|
||
|
return numpy.square(magspec(frames, NFFT))
|
||
|
|
||
|
|
||
|
|
||
|
def mfcc(signal,samplerate=16000,winlen=0.025,winstep=0.01,numcep=13,
|
||
|
nfilt=23,nfft=512,lowfreq=20,highfreq=None,dither=1.0,remove_dc_offset=True,preemph=0.97,
|
||
|
ceplifter=22,useEnergy=True,wintype='povey'):
|
||
|
"""Compute MFCC features from an audio signal.
|
||
|
|
||
|
:param signal: the audio signal from which to compute features. Should be an N*1 array
|
||
|
:param samplerate: the samplerate of the signal we are working with.
|
||
|
:param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
|
||
|
:param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds)
|
||
|
:param numcep: the number of cepstrum to return, default 13
|
||
|
:param nfilt: the number of filters in the filterbank, default 26.
|
||
|
:param nfft: the FFT size. Default is 512.
|
||
|
:param lowfreq: lowest band edge of mel filters. In Hz, default is 0.
|
||
|
:param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2
|
||
|
:param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.
|
||
|
:param ceplifter: apply a lifter to final cepstral coefficients. 0 is no lifter. Default is 22.
|
||
|
:param appendEnergy: if this is true, the zeroth cepstral coefficient is replaced with the log of the total frame energy.
|
||
|
:param winfunc: the analysis window to apply to each frame. By default no window is applied. You can use numpy window functions here e.g. winfunc=numpy.hamming
|
||
|
:returns: A numpy array of size (NUMFRAMES by numcep) containing features. Each row holds 1 feature vector.
|
||
|
"""
|
||
|
feat,energy = fbank(signal,samplerate,winlen,winstep,nfilt,nfft,lowfreq,highfreq,dither,remove_dc_offset,preemph,wintype)
|
||
|
feat = numpy.log(feat)
|
||
|
feat = dct(feat, type=2, axis=1, norm='ortho')[:,:numcep]
|
||
|
feat = lifter(feat,ceplifter)
|
||
|
if useEnergy: feat[:,0] = numpy.log(energy) # replace first cepstral coefficient with log of frame energy
|
||
|
return feat
|
||
|
|
||
|
def fbank(signal,samplerate=16000,winlen=0.025,winstep=0.01,
|
||
|
nfilt=40,nfft=512,lowfreq=0,highfreq=None,dither=1.0,remove_dc_offset=True, preemph=0.97,
|
||
|
wintype='hamming'):
|
||
|
"""Compute Mel-filterbank energy features from an audio signal.
|
||
|
|
||
|
:param signal: the audio signal from which to compute features. Should be an N*1 array
|
||
|
:param samplerate: the samplerate of the signal we are working with.
|
||
|
:param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
|
||
|
:param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds)
|
||
|
:param nfilt: the number of filters in the filterbank, default 26.
|
||
|
:param nfft: the FFT size. Default is 512.
|
||
|
:param lowfreq: lowest band edge of mel filters. In Hz, default is 0.
|
||
|
:param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2
|
||
|
:param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.
|
||
|
:param winfunc: the analysis window to apply to each frame. By default no window is applied. You can use numpy window functions here e.g. winfunc=numpy.hamming
|
||
|
winfunc=lambda x:numpy.ones((x,))
|
||
|
:returns: 2 values. The first is a numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector. The
|
||
|
second return value is the energy in each frame (total energy, unwindowed)
|
||
|
"""
|
||
|
highfreq= highfreq or samplerate/2
|
||
|
frames,raw_frames = sigproc.framesig(signal, winlen*samplerate, winstep*samplerate, dither, preemph, remove_dc_offset, wintype)
|
||
|
pspec = sigproc.powspec(frames,nfft) # nearly the same until this part
|
||
|
energy = numpy.sum(raw_frames**2,1) # this stores the raw energy in each frame
|
||
|
energy = numpy.where(energy == 0,numpy.finfo(float).eps,energy) # if energy is zero, we get problems with log
|
||
|
|
||
|
fb = get_filterbanks(nfilt,nfft,samplerate,lowfreq,highfreq)
|
||
|
feat = numpy.dot(pspec,fb.T) # compute the filterbank energies
|
||
|
feat = numpy.where(feat == 0,numpy.finfo(float).eps,feat) # if feat is zero, we get problems with log
|
||
|
|
||
|
return feat,energy
|
||
|
|
||
|
def logfbank(signal,samplerate=16000,winlen=0.025,winstep=0.01,
|
||
|
nfilt=40,nfft=512,lowfreq=64,highfreq=None,dither=1.0,remove_dc_offset=True,preemph=0.97,wintype='hamming'):
|
||
|
"""Compute log Mel-filterbank energy features from an audio signal.
|
||
|
|
||
|
:param signal: the audio signal from which to compute features. Should be an N*1 array
|
||
|
:param samplerate: the samplerate of the signal we are working with.
|
||
|
:param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
|
||
|
:param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds)
|
||
|
:param nfilt: the number of filters in the filterbank, default 26.
|
||
|
:param nfft: the FFT size. Default is 512.
|
||
|
:param lowfreq: lowest band edge of mel filters. In Hz, default is 0.
|
||
|
:param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2
|
||
|
:param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.
|
||
|
:returns: A numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector.
|
||
|
"""
|
||
|
feat,energy = fbank(signal,samplerate,winlen,winstep,nfilt,nfft,lowfreq,highfreq,dither, remove_dc_offset,preemph,wintype)
|
||
|
return numpy.log(feat)
|
||
|
|
||
|
def hz2mel(hz):
|
||
|
"""Convert a value in Hertz to Mels
|
||
|
|
||
|
:param hz: a value in Hz. This can also be a numpy array, conversion proceeds element-wise.
|
||
|
:returns: a value in Mels. If an array was passed in, an identical sized array is returned.
|
||
|
"""
|
||
|
return 1127 * numpy.log(1+hz/700.0)
|
||
|
|
||
|
def mel2hz(mel):
|
||
|
"""Convert a value in Mels to Hertz
|
||
|
|
||
|
:param mel: a value in Mels. This can also be a numpy array, conversion proceeds element-wise.
|
||
|
:returns: a value in Hertz. If an array was passed in, an identical sized array is returned.
|
||
|
"""
|
||
|
return 700 * (numpy.exp(mel/1127.0)-1)
|
||
|
|
||
|
def get_filterbanks(nfilt=26,nfft=512,samplerate=16000,lowfreq=0,highfreq=None):
|
||
|
"""Compute a Mel-filterbank. The filters are stored in the rows, the columns correspond
|
||
|
to fft bins. The filters are returned as an array of size nfilt * (nfft/2 + 1)
|
||
|
|
||
|
:param nfilt: the number of filters in the filterbank, default 20.
|
||
|
:param nfft: the FFT size. Default is 512.
|
||
|
:param samplerate: the samplerate of the signal we are working with. Affects mel spacing.
|
||
|
:param lowfreq: lowest band edge of mel filters, default 0 Hz
|
||
|
:param highfreq: highest band edge of mel filters, default samplerate/2
|
||
|
:returns: A numpy array of size nfilt * (nfft/2 + 1) containing filterbank. Each row holds 1 filter.
|
||
|
"""
|
||
|
highfreq= highfreq or samplerate/2
|
||
|
assert highfreq <= samplerate/2, "highfreq is greater than samplerate/2"
|
||
|
|
||
|
# compute points evenly spaced in mels
|
||
|
lowmel = hz2mel(lowfreq)
|
||
|
highmel = hz2mel(highfreq)
|
||
|
|
||
|
# check kaldi/src/feat/Mel-computations.h
|
||
|
fbank = numpy.zeros([nfilt,nfft//2+1])
|
||
|
mel_freq_delta = (highmel-lowmel)/(nfilt+1)
|
||
|
for j in range(0,nfilt):
|
||
|
leftmel = lowmel+j*mel_freq_delta
|
||
|
centermel = lowmel+(j+1)*mel_freq_delta
|
||
|
rightmel = lowmel+(j+2)*mel_freq_delta
|
||
|
for i in range(0,nfft//2):
|
||
|
mel=hz2mel(i*samplerate/nfft)
|
||
|
if mel>leftmel and mel<rightmel:
|
||
|
if mel<centermel:
|
||
|
fbank[j,i]=(mel-leftmel)/(centermel-leftmel)
|
||
|
else:
|
||
|
fbank[j,i]=(rightmel-mel)/(rightmel-centermel)
|
||
|
return fbank
|
||
|
|
||
|
def lifter(cepstra, L=22):
|
||
|
"""Apply a cepstral lifter the the matrix of cepstra. This has the effect of increasing the
|
||
|
magnitude of the high frequency DCT coeffs.
|
||
|
|
||
|
:param cepstra: the matrix of mel-cepstra, will be numframes * numcep in size.
|
||
|
:param L: the liftering coefficient to use. Default is 22. L <= 0 disables lifter.
|
||
|
"""
|
||
|
if L > 0:
|
||
|
nframes,ncoeff = numpy.shape(cepstra)
|
||
|
n = numpy.arange(ncoeff)
|
||
|
lift = 1 + (L/2.)*numpy.sin(numpy.pi*n/L)
|
||
|
return lift*cepstra
|
||
|
else:
|
||
|
# values of L <= 0, do nothing
|
||
|
return cepstra
|
||
|
|
||
|
def delta(feat, N):
|
||
|
"""Compute delta features from a feature vector sequence.
|
||
|
|
||
|
:param feat: A numpy array of size (NUMFRAMES by number of features) containing features. Each row holds 1 feature vector.
|
||
|
:param N: For each frame, calculate delta features based on preceding and following N frames
|
||
|
:returns: A numpy array of size (NUMFRAMES by number of features) containing delta features. Each row holds 1 delta feature vector.
|
||
|
"""
|
||
|
if N < 1:
|
||
|
raise ValueError('N must be an integer >= 1')
|
||
|
NUMFRAMES = len(feat)
|
||
|
denominator = 2 * sum([i**2 for i in range(1, N+1)])
|
||
|
delta_feat = numpy.empty_like(feat)
|
||
|
padded = numpy.pad(feat, ((N, N), (0, 0)), mode='edge') # padded version of feat
|
||
|
for t in range(NUMFRAMES):
|
||
|
delta_feat[t] = numpy.dot(numpy.arange(-N, N+1), padded[t : t+2*N+1]) / denominator # [t : t+2*N+1] == [(N+t)-N : (N+t)+N+1]
|
||
|
return delta_feat
|
||
|
|
||
|
##### modify for test ######
|
||
|
|
||
|
def framesig_without_dither_dc_preemphasize(sig, frame_len, frame_step, wintype='hamming', stride_trick=True):
|
||
|
"""Frame a signal into overlapping frames.
|
||
|
|
||
|
:param sig: the audio signal to frame.
|
||
|
:param frame_len: length of each frame measured in samples.
|
||
|
:param frame_step: number of samples after the start of the previous frame that the next frame should begin.
|
||
|
:param winfunc: the analysis window to apply to each frame. By default no window is applied.
|
||
|
:param stride_trick: use stride trick to compute the rolling window and window multiplication faster
|
||
|
:returns: an array of frames. Size is NUMFRAMES by frame_len.
|
||
|
"""
|
||
|
slen = len(sig)
|
||
|
frame_len = int(round_half_up(frame_len))
|
||
|
frame_step = int(round_half_up(frame_step))
|
||
|
if slen <= frame_len:
|
||
|
numframes = 1
|
||
|
else:
|
||
|
numframes = 1 + (( slen - frame_len) // frame_step)
|
||
|
|
||
|
# check kaldi/src/feat/feature-window.h
|
||
|
padsignal = sig[:(numframes-1)*frame_step+frame_len]
|
||
|
|
||
|
if wintype is 'povey':
|
||
|
win = numpy.empty(frame_len)
|
||
|
for i in range(frame_len):
|
||
|
win[i] = (0.5-0.5*numpy.cos(2*numpy.pi/(frame_len-1)*i))**0.85
|
||
|
elif wintype == '':
|
||
|
win = numpy.ones(frame_len)
|
||
|
elif wintype == 'hann':
|
||
|
win = numpy.hanning(frame_len)
|
||
|
else: # the hamming window
|
||
|
win = numpy.hamming(frame_len)
|
||
|
|
||
|
if stride_trick:
|
||
|
frames = rolling_window(padsignal, window=frame_len, step=frame_step)
|
||
|
else:
|
||
|
indices = numpy.tile(numpy.arange(0, frame_len), (numframes, 1)) + numpy.tile(
|
||
|
numpy.arange(0, numframes * frame_step, frame_step), (frame_len, 1)).T
|
||
|
indices = numpy.array(indices, dtype=numpy.int32)
|
||
|
frames = padsignal[indices]
|
||
|
win = numpy.tile(win, (numframes, 1))
|
||
|
|
||
|
frames = frames.astype(numpy.float32)
|
||
|
raw_frames = frames
|
||
|
return frames * win, raw_frames
|
||
|
|
||
|
|
||
|
def frames(signal,samplerate=16000,winlen=0.025,winstep=0.01,
|
||
|
nfilt=40,nfft=512,lowfreq=0,highfreq=None, wintype='hamming'):
|
||
|
frames_with_win, raw_frames = framesig_without_dither_dc_preemphasize(signal, winlen*samplerate, winstep*samplerate, wintype)
|
||
|
return frames_with_win, raw_frames
|
||
|
|
||
|
|
||
|
def complexspec(frames, NFFT):
|
||
|
"""Compute the magnitude spectrum of each frame in frames. If frames is an NxD matrix, output will be Nx(NFFT/2+1).
|
||
|
|
||
|
:param frames: the array of frames. Each row is a frame.
|
||
|
:param NFFT: the FFT length to use. If NFFT > frame_len, the frames are zero-padded.
|
||
|
:returns: If frames is an NxD matrix, output will be Nx(NFFT/2+1). Each row will be the magnitude spectrum of the corresponding frame.
|
||
|
"""
|
||
|
if numpy.shape(frames)[1] > NFFT:
|
||
|
logging.warn(
|
||
|
'frame length (%d) is greater than FFT size (%d), frame will be truncated. Increase NFFT to avoid.',
|
||
|
numpy.shape(frames)[1], NFFT)
|
||
|
complex_spec = numpy.fft.rfft(frames, NFFT)
|
||
|
return complex_spec
|
||
|
|
||
|
|
||
|
def stft_with_window(signal,samplerate=16000,winlen=0.025,winstep=0.01,
|
||
|
nfilt=40,nfft=512,lowfreq=0,highfreq=None,dither=1.0,remove_dc_offset=True, preemph=0.97,
|
||
|
wintype='hamming'):
|
||
|
frames_with_win, raw_frames = framesig_without_dither_dc_preemphasize(signal, winlen*samplerate, winstep*samplerate, wintype)
|
||
|
|
||
|
spec = magspec(frames_with_win, nfft) # nearly the same until this part
|
||
|
scomplex = complexspec(frames_with_win, nfft)
|
||
|
|
||
|
rspec = magspec(raw_frames, nfft)
|
||
|
rcomplex = complexspec(raw_frames, nfft)
|
||
|
return spec, scomplex, rspec, rcomplex
|
||
|
|
||
|
|
||
|
class TestKaldiFE(unittest.TestCase):
|
||
|
def setUp(self):
|
||
|
self. this_dir = Path(__file__).parent
|
||
|
|
||
|
self.wavpath = str(self.this_dir / 'english.wav')
|
||
|
self.winlen=0.025 # ms
|
||
|
self.winstep=0.01 # ms
|
||
|
self.nfft=512
|
||
|
self.lowfreq = 0
|
||
|
self.highfreq = None
|
||
|
self.wintype='hamm'
|
||
|
self.nfilt=40
|
||
|
|
||
|
paddle.set_device('cpu')
|
||
|
|
||
|
|
||
|
def test_read(self):
|
||
|
import scipy.io.wavfile as wav
|
||
|
rate, sig = wav.read(self.wavpath)
|
||
|
sr, wav = kaldi.read(self.wavpath)
|
||
|
wav = wav[:, 0]
|
||
|
self.assertTrue(np.all(sig == wav))
|
||
|
self.assertEqual(rate, sr)
|
||
|
|
||
|
def test_frames(self):
|
||
|
sr, wav = kaldi.read(self.wavpath)
|
||
|
wav = wav[:, 0]
|
||
|
_, fs = frames(wav, samplerate=sr,
|
||
|
winlen=self.winlen, winstep=self.winstep,
|
||
|
nfilt=self.nfilt, nfft=self.nfft,
|
||
|
lowfreq=self.lowfreq, highfreq=self.highfreq,
|
||
|
wintype=self.wintype)
|
||
|
|
||
|
t_wav = paddle.to_tensor([wav], dtype='float32')
|
||
|
t_wavlen = paddle.to_tensor([len(wav)])
|
||
|
t_fs, t_nframe = kaldi.frames(t_wav, t_wavlen, sr, self.winlen, self.winstep, clip=False)
|
||
|
t_fs = t_fs.astype(fs.dtype)[0]
|
||
|
|
||
|
self.assertEqual(t_nframe.item(), fs.shape[0])
|
||
|
self.assertTrue(np.allclose(t_fs.numpy(), fs))
|
||
|
|
||
|
|
||
|
def test_stft(self):
|
||
|
sr, wav = kaldi.read(self.wavpath)
|
||
|
wav = wav[:, 0]
|
||
|
|
||
|
for wintype in ['', 'hamm', 'hann', 'povey']:
|
||
|
self.wintype=wintype
|
||
|
_, stft_c_win, _, _ = stft_with_window(wav, samplerate=sr,
|
||
|
winlen=self.winlen, winstep=self.winstep,
|
||
|
nfilt=self.nfilt, nfft=self.nfft,
|
||
|
lowfreq=self.lowfreq, highfreq=self.highfreq,
|
||
|
wintype=self.wintype)
|
||
|
|
||
|
t_wav = paddle.to_tensor([wav], dtype='float32')
|
||
|
t_wavlen = paddle.to_tensor([len(wav)])
|
||
|
|
||
|
stft_class = kaldi.STFT(self.nfft, sr, self.winlen, self.winstep, window_type=self.wintype, dither=0.0, preemph_coeff=0.0, remove_dc_offset=False, clip=False)
|
||
|
t_stft, t_nframe = stft_class(t_wav, t_wavlen)
|
||
|
t_stft = t_stft.astype(stft_c_win.real.dtype)[0]
|
||
|
t_real = t_stft[:, :, 0]
|
||
|
t_imag = t_stft[:, :, 1]
|
||
|
|
||
|
self.assertEqual(t_nframe.item(), stft_c_win.real.shape[0])
|
||
|
|
||
|
self.assertLess(np.sum(t_real.numpy()) - np.sum(stft_c_win.real), 1)
|
||
|
self.assertTrue(np.allclose(t_real.numpy(), stft_c_win.real, atol=1e-1))
|
||
|
|
||
|
self.assertLess(np.sum(t_imag.numpy()) - np.sum(stft_c_win.imag), 1)
|
||
|
self.assertTrue(np.allclose(t_imag.numpy(), stft_c_win.imag, atol=1e-1))
|
||
|
|
||
|
|
||
|
def test_magspec(self):
|
||
|
sr, wav = kaldi.read(self.wavpath)
|
||
|
wav = wav[:, 0]
|
||
|
for wintype in ['', 'hamm', 'hann', 'povey']:
|
||
|
self.wintype=wintype
|
||
|
stft_win, _, _, _ = stft_with_window(wav, samplerate=sr,
|
||
|
winlen=self.winlen, winstep=self.winstep,
|
||
|
nfilt=self.nfilt, nfft=self.nfft,
|
||
|
lowfreq=self.lowfreq, highfreq=self.highfreq,
|
||
|
wintype=self.wintype)
|
||
|
|
||
|
t_wav = paddle.to_tensor([wav], dtype='float32')
|
||
|
t_wavlen = paddle.to_tensor([len(wav)])
|
||
|
|
||
|
stft_class = kaldi.STFT(self.nfft, sr, self.winlen, self.winstep, window_type=self.wintype, dither=0.0, preemph_coeff=0.0, remove_dc_offset=False, clip=False)
|
||
|
t_stft, t_nframe = stft_class(t_wav, t_wavlen)
|
||
|
t_stft = t_stft.astype(stft_win.dtype)
|
||
|
t_spec = kaldi.magspec(t_stft)[0]
|
||
|
|
||
|
self.assertEqual(t_nframe.item(), stft_win.shape[0])
|
||
|
|
||
|
self.assertLess(np.sum(t_spec.numpy()) - np.sum(stft_win), 1)
|
||
|
self.assertTrue(np.allclose(t_spec.numpy(), stft_win, atol=1e-1))
|
||
|
|
||
|
|
||
|
def test_magsepc_winprocess(self):
|
||
|
sr, wav = kaldi.read(self.wavpath)
|
||
|
wav = wav[:, 0]
|
||
|
fs, _= framesig(wav, self.winlen*sr, self.winstep*sr,
|
||
|
dither=0.0, preemph=0.97, remove_dc_offset=True, wintype='povey', stride_trick=True)
|
||
|
spec = magspec(fs, self.nfft) # nearly the same until this part
|
||
|
|
||
|
t_wav = paddle.to_tensor([wav], dtype='float32')
|
||
|
t_wavlen = paddle.to_tensor([len(wav)])
|
||
|
stft_class = kaldi.STFT(
|
||
|
self.nfft, sr, self.winlen, self.winstep,
|
||
|
window_type='povey', dither=0.0, preemph_coeff=0.97, remove_dc_offset=True, clip=False)
|
||
|
t_stft, t_nframe = stft_class(t_wav, t_wavlen)
|
||
|
t_stft = t_stft.astype(spec.dtype)
|
||
|
t_spec = kaldi.magspec(t_stft)[0]
|
||
|
|
||
|
self.assertEqual(t_nframe.item(), fs.shape[0])
|
||
|
|
||
|
self.assertLess(np.sum(t_spec.numpy()) - np.sum(spec), 1)
|
||
|
self.assertTrue(np.allclose(t_spec.numpy(), spec, atol=1e-1))
|
||
|
|
||
|
|
||
|
def test_powspec(self):
|
||
|
sr, wav = kaldi.read(self.wavpath)
|
||
|
wav = wav[:, 0]
|
||
|
for wintype in ['', 'hamm', 'hann', 'povey']:
|
||
|
self.wintype=wintype
|
||
|
stft_win, _, _, _ = stft_with_window(wav, samplerate=sr,
|
||
|
winlen=self.winlen, winstep=self.winstep,
|
||
|
nfilt=self.nfilt, nfft=self.nfft,
|
||
|
lowfreq=self.lowfreq, highfreq=self.highfreq,
|
||
|
wintype=self.wintype)
|
||
|
stft_win = np.square(stft_win)
|
||
|
|
||
|
t_wav = paddle.to_tensor([wav], dtype='float32')
|
||
|
t_wavlen = paddle.to_tensor([len(wav)])
|
||
|
|
||
|
stft_class = kaldi.STFT(self.nfft, sr, self.winlen, self.winstep, window_type=self.wintype, dither=0.0, preemph_coeff=0.0, remove_dc_offset=False, clip=False)
|
||
|
t_stft, t_nframe = stft_class(t_wav, t_wavlen)
|
||
|
t_stft = t_stft.astype(stft_win.dtype)
|
||
|
t_spec = kaldi.powspec(t_stft)[0]
|
||
|
|
||
|
self.assertEqual(t_nframe.item(), stft_win.shape[0])
|
||
|
|
||
|
self.assertLess(np.sum(t_spec.numpy() - stft_win), 5e4)
|
||
|
self.assertTrue(np.allclose(t_spec.numpy(), stft_win, atol=1e2))
|
||
|
|
||
|
|
||
|
# from python_speech_features import mfcc
|
||
|
# from python_speech_features import delta
|
||
|
# from python_speech_features import logfbank
|
||
|
# import scipy.io.wavfile as wav
|
||
|
|
||
|
# (rate,sig) = wav.read("english.wav")
|
||
|
|
||
|
# # note that generally nfilt=40 is used for speech recognition
|
||
|
# fbank_feat = logfbank(sig,nfilt=23,lowfreq=20,dither=0,wintype='povey')
|
||
|
|
||
|
# # the computed fbank coefficents of english.wav with dimension [110,23]
|
||
|
# # [ 12.2865 12.6906 13.1765 15.714 16.064 15.7553 16.5746 16.9205 16.6472 16.1302 16.4576 16.7326 16.8864 17.7215 18.88 19.1377 19.1495 18.6683 18.3886 20.3506 20.2772 18.8248 18.1899
|
||
|
# # 11.9198 13.146 14.7215 15.8642 17.4288 16.394 16.8238 16.1095 16.4297 16.6331 16.3163 16.5093 17.4981 18.3429 19.6555 19.6263 19.8435 19.0534 19.001 20.0287 19.7707 19.5852 19.1112
|
||
|
# # ...
|
||
|
# # ...
|
||
|
# # the same with that using kaldi commands: compute-fbank-feats --dither=0.0
|
||
|
|
||
|
|
||
|
# mfcc_feat = mfcc(sig,dither=0,useEnergy=True,wintype='povey')
|
||
|
|
||
|
# # the computed mfcc coefficents of english.wav with dimension [110,13]
|
||
|
# # [ 17.1337 -23.3651 -7.41751 -7.73686 -21.3682 -8.93884 -3.70843 4.68346 -16.0676 12.782 -7.24054 8.25089 10.7292
|
||
|
# # 17.1692 -23.3028 -5.61872 -4.0075 -23.287 -20.6101 -5.51584 -6.15273 -14.4333 8.13052 -0.0345329 2.06274 -0.564298
|
||
|
# # ...
|
||
|
# # ...
|
||
|
# # the same with that using kaldi commands: compute-mfcc-feats --dither=0.0
|
||
|
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
unittest.main()
|