This example contains code used to train a [parallel wavegan](http://arxiv.org/abs/1910.11480) model with [VCTK](https://datashare.ed.ac.uk/handle/10283/3443).
Download VCTK-0.92 from the [official website](https://datashare.ed.ac.uk/handle/10283/3443) and extract it to `~/datasets`. Then the dataset is in directory `~/datasets/VCTK-Corpus-0.92`.
### Get MFA results for silence trim
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) results to cut silence in the edge of audio.
You can download from here [vctk_alignment.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/VCTK-Corpus-0.92/vctk_alignment.tar.gz), or train your own MFA model reference to [use_mfa example](https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/other/use_mfa) of our repo.
ps: we remove three speakers in VCTK-0.92 (see [reorganize_vctk.py](https://github.com/PaddlePaddle/DeepSpeech/blob/develop/examples/other/use_mfa/local/reorganize_vctk.py)):
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│ ├── norm
│ └── raw
├── test
│ ├── norm
│ └── raw
└── train
├── norm
├── raw
└── feats_stats.npy
```
The dataset is split into 3 parts, namely `train`, `dev` and `test`, each of which contains a `norm` and `raw` subfolder. The `raw` folder contains log magnitude of mel spectrogram of each utterances, while the norm folder contains normalized spectrogram. The statistics used to normalize the spectrogram is computed from the training set, which is located in `dump/train/feats_stats.npy`.
Also there is a `metadata.jsonl` in each subfolder. It is a table-like file which contains id and paths to spectrogam of each utterance.
1.`--config` parallel wavegan config file. You should use the same config with which the model is trained.
2.`--checkpoint` is the checkpoint to load. Pick one of the checkpoints from `checkpoints` inside the training output directory. If you use the pretrained model, use the `pwg_snapshot_iter_400000.pdz`.
3.`--test-metadata` is the metadata of the test dataset. Use the `metadata.jsonl` in the `dev/norm` subfolder from the processed directory.
4.`--output-dir` is the directory to save the synthesized audio files.
5.`--device` is the type of device to run synthesis, 'cpu' and 'gpu' are supported.