|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
|
|
import os
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from paddle import inference
|
|
|
|
from paddleaudio.backends import load as load_audio
|
|
|
|
from paddleaudio.datasets import ESC50
|
|
|
|
from paddleaudio.features import melspectrogram
|
|
|
|
from scipy.special import softmax
|
|
|
|
|
|
|
|
# yapf: disable
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--model_dir", type=str, required=True, default="./export", help="The directory to static model.")
|
|
|
|
parser.add_argument("--batch_size", type=int, default=2, help="Batch size per GPU/CPU for training.")
|
|
|
|
parser.add_argument('--device', choices=['cpu', 'gpu', 'xpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
|
|
|
|
parser.add_argument('--use_tensorrt', type=eval, default=False, choices=[True, False], help='Enable to use tensorrt to speed up.')
|
|
|
|
parser.add_argument("--precision", type=str, default="fp32", choices=["fp32", "fp16"], help='The tensorrt precision.')
|
|
|
|
parser.add_argument('--cpu_threads', type=int, default=10, help='Number of threads to predict when using cpu.')
|
|
|
|
parser.add_argument('--enable_mkldnn', type=eval, default=False, choices=[True, False], help='Enable to use mkldnn to speed up when using cpu.')
|
|
|
|
parser.add_argument("--log_dir", type=str, default="./log", help="The path to save log.")
|
|
|
|
args = parser.parse_args()
|
|
|
|
# yapf: enable
|
|
|
|
|
|
|
|
|
|
|
|
def extract_features(files: str, **kwargs):
|
|
|
|
waveforms = []
|
|
|
|
srs = []
|
|
|
|
max_length = float('-inf')
|
|
|
|
for file in files:
|
|
|
|
waveform, sr = load_audio(file, sr=None)
|
|
|
|
max_length = max(max_length, len(waveform))
|
|
|
|
waveforms.append(waveform)
|
|
|
|
srs.append(sr)
|
|
|
|
|
|
|
|
feats = []
|
|
|
|
for i in range(len(waveforms)):
|
|
|
|
# padding
|
|
|
|
if len(waveforms[i]) < max_length:
|
|
|
|
pad_width = max_length - len(waveforms[i])
|
|
|
|
waveforms[i] = np.pad(waveforms[i], pad_width=(0, pad_width))
|
|
|
|
|
|
|
|
feat = melspectrogram(waveforms[i], sr, **kwargs).transpose()
|
|
|
|
feats.append(feat)
|
|
|
|
|
|
|
|
return np.stack(feats, axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
class Predictor(object):
|
|
|
|
def __init__(self,
|
|
|
|
model_dir,
|
|
|
|
device="gpu",
|
|
|
|
batch_size=1,
|
|
|
|
use_tensorrt=False,
|
|
|
|
precision="fp32",
|
|
|
|
cpu_threads=10,
|
|
|
|
enable_mkldnn=False):
|
|
|
|
self.batch_size = batch_size
|
|
|
|
|
|
|
|
model_file = os.path.join(model_dir, "inference.pdmodel")
|
|
|
|
params_file = os.path.join(model_dir, "inference.pdiparams")
|
|
|
|
|
|
|
|
assert os.path.isfile(model_file) and os.path.isfile(
|
|
|
|
params_file), 'Please check model and parameter files.'
|
|
|
|
|
|
|
|
config = inference.Config(model_file, params_file)
|
|
|
|
if device == "gpu":
|
|
|
|
# set GPU configs accordingly
|
|
|
|
# such as intialize the gpu memory, enable tensorrt
|
|
|
|
config.enable_use_gpu(100, 0)
|
|
|
|
precision_map = {
|
|
|
|
"fp16": inference.PrecisionType.Half,
|
|
|
|
"fp32": inference.PrecisionType.Float32,
|
|
|
|
}
|
|
|
|
precision_mode = precision_map[precision]
|
|
|
|
|
|
|
|
if use_tensorrt:
|
|
|
|
config.enable_tensorrt_engine(
|
|
|
|
max_batch_size=batch_size,
|
|
|
|
min_subgraph_size=30,
|
|
|
|
precision_mode=precision_mode)
|
|
|
|
elif device == "cpu":
|
|
|
|
# set CPU configs accordingly,
|
|
|
|
# such as enable_mkldnn, set_cpu_math_library_num_threads
|
|
|
|
config.disable_gpu()
|
|
|
|
if enable_mkldnn:
|
|
|
|
# cache 10 different shapes for mkldnn to avoid memory leak
|
|
|
|
config.set_mkldnn_cache_capacity(10)
|
|
|
|
config.enable_mkldnn()
|
|
|
|
config.set_cpu_math_library_num_threads(cpu_threads)
|
|
|
|
elif device == "xpu":
|
|
|
|
# set XPU configs accordingly
|
|
|
|
config.enable_xpu(100)
|
|
|
|
|
|
|
|
config.switch_use_feed_fetch_ops(False)
|
|
|
|
self.predictor = inference.create_predictor(config)
|
|
|
|
self.input_handles = [
|
|
|
|
self.predictor.get_input_handle(name)
|
|
|
|
for name in self.predictor.get_input_names()
|
|
|
|
]
|
|
|
|
self.output_handle = self.predictor.get_output_handle(
|
|
|
|
self.predictor.get_output_names()[0])
|
|
|
|
|
|
|
|
def predict(self, wavs):
|
|
|
|
feats = extract_features(wavs)
|
|
|
|
|
|
|
|
self.input_handles[0].copy_from_cpu(feats)
|
|
|
|
self.predictor.run()
|
|
|
|
logits = self.output_handle.copy_to_cpu()
|
|
|
|
probs = softmax(logits, axis=1)
|
|
|
|
indices = np.argmax(probs, axis=1)
|
|
|
|
|
|
|
|
return indices
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
# Define predictor to do prediction.
|
|
|
|
predictor = Predictor(args.model_dir, args.device, args.batch_size,
|
|
|
|
args.use_tensorrt, args.precision, args.cpu_threads,
|
|
|
|
args.enable_mkldnn)
|
|
|
|
|
|
|
|
wavs = [
|
|
|
|
'~/audio_demo_resource/cat.wav',
|
|
|
|
'~/audio_demo_resource/dog.wav',
|
|
|
|
]
|
|
|
|
|
|
|
|
for i in range(len(wavs)):
|
|
|
|
wavs[i] = os.path.abspath(os.path.expanduser(wavs[i]))
|
|
|
|
assert os.path.isfile(
|
|
|
|
wavs[i]), f'Please check input wave file: {wavs[i]}'
|
|
|
|
|
|
|
|
results = predictor.predict(wavs)
|
|
|
|
for idx, wav in enumerate(wavs):
|
|
|
|
print(f'Wav: {wav} \t Label: {ESC50.label_list[results[idx]]}')
|